Background: Chronic kidney disease is a gradual loss of kidney function with diabetes and hypertension as the leading cause. Chronic kidney disease is one of these systemic diseases that can affect salivary contents. Aims: This study aimed to assess salivary immunoglobulin A, interleukin-6 and C- reactive protein in chronic kidney disease patients on hemodialysis and those on conservative treatment in comparison with control subjects. Materials and methods: Ninety subjects were included in this study divided into three groups: 30 patients with chronic kidney disease on hemodialysis for at least 6 months ago; 30 patients with chronic kidney disease on conservative treatment and 30 healthy control subjects. Secretory immunoglobulin A, interleukin-6 and C- reactive protein in saliva samples were measured by enzyme-linked immunosorbent assay ELISA. Results: No significant difference in salivary immunoglobulin A level among study groups was seen. A significant increase in salivary interleukin-6 and C- reactive protein in both chronic kidney disease patients on hemodialysis and those on conservative treatment compared to the control group. While, no significant salivary IL-6 and CRP differences were seen between both patient groups, on hemodialysis and conservative treatment. Conclusions: There was no significant difference among chronic kidney disease patients on hemodialysis, on conservative treatment and control healthy subjects regarding to salivary IgA while Salivary interleukin -6 and C- reactive protein was significantly higher in chronic kidney disease patients on hemodialysis and those on conservative treatment compared to healthy subjects.
The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThe main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MoreThis research presents the possibility of using banana peel (arising from agricultural production waste) as biosorbent for removal of copper from simulated aqueous solution. Batch sorption experiments were performed as a function of pH, sorbent dose, and contact time. The optimal pH value of Copper (II) removal by banana peel was 6. The amount of sorbed metal ions was calculated as 52.632 mg/g. Sorption kinetic data were tested using pseudo-first order, and pseudo-second order models. Kinetic studies showed that the sorption followed a pseudo second order reaction due to the high correlation coefficient and the agreement between the experimental and calculated values of qe. Thermodynamic parameters such as enthalpy change (ΔH
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreLight isotopes, especially closed shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, 12C(p, γ) 13N and 14N(p, γ) 15O reactions have been calculated by means of Matlab codes to find the reaction rate across a temperature range of 0.006 to 10 GK using non-resonant parts, as well as the astrophysical S- factor S(E) at low energies. It was concluded that the high binding energy of 12C and 14N nuclei make the reaction less probable thus enabling other competitive processes to develop, which enhances the probability of other competitive proton reactions in the CNO cycle.
Research aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s