Background: The purpose of this study was to evaluate the effect of addition of surface treated silicon dioxide Nano filler (SiO2) on some properties of heat cured acrylic resin denture base material (PMMA). The properties were impact strength, transvers strength, and surface hardness. Materials and methods: In addition to controlled group SiO2 powder was added to PMMA powder by weight in three different percentages 3%, 5% and 7%, mixed by probe ultra-sonication machine.120 specimens were constructed and divided into 3 groups according to the test (each group consist of 40 specimens) and each group was subdivided into 4 sub-groups according to the percentage of added SiO2 (finally each subgroup consist of 10 specimens). The tests conducted were impact strength (charpy test), transverse strength and indentation hardness (shore D). Results: A highly significant increase in impact strength and transverse strength was observed with the addition of SiO2 powder to (PMMA) at the percentage of 3% and 5%; while a significant reduction occurred in both impact and transverse strength specimen’s tests at the percentage of 7% A Highly significant increase in surface hardness was observed at the percentage of 3%, 5%and7. Conclusion: The addition of Nano SiO2 powder to acrylic resin improves the impact strength and transverse strength of acrylic resin at the same time this addition increase surface hardness with the increase in the concentration of Nano SiO2 particles.
The effects of three different additives formulations namely Lubrizol 21001, HiTEC 8722B and HiTEC 340 on the efficiency of VII namely OCP of three base lubricating oils namely 40 stock and 60 stock and 150 stock at four temperatures 40, 60, 80 and 100oC were investigated. The efficiency of OCP is decreased when blended with 4 and 8 wt% of Lubrizol 21001 for all the three base oil types. But it is increased when adding 4 wt% and 8 wt% of H-8722B in 40 stock. While for 60 stock and 150 stock the OCP efficiency decreased by adding 4 and 8 wt% of H-8722B. In the other hand, it is decreased with a high percentage by adding 4 and 8 wt% of H-340 for 60 stock and 150 stock and for 40 stock it is increased by adding 4 wt% of H-340 and decreased
... Show MorePolymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength,
... Show MoreThis article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age conc
... Show MoreDental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreIn this study, Cobalt Oxide nanostructure was successfully prepared using the chemical spray pyrolysis technique. The cobalt oxide phase was analysed by X-ray Diffraction (XRD) and proved the preparation of two cobalt oxide phases which are Co3O4 and CoO phases. The surface morphology was characterized by Scanning Electron Microscope (SEM) images showing the topography of the sample with grain size smaller than 100 nm. The optical behavior of the prepared material was studied by UV-Vis spectrophotometer. The band gap varied as 1.9 eV and 2.6 eV for Co3O4 prepared from cobalt sulphate precursor, 2.03 eV and 4.04 eV for Co3O4 prepared from cobalt nitrate precursor, 2.04 eV and 4.01 eV for CoO prepared from cobalt chloride precursor where th
... Show MoreIn this study a new composite nano material was prepared and characterized through the polymerization of inter attuplgie layered m-phenylendiamine with p-kresol. The results indicated that the propagated polymer separated the clay aluminosilicate layers as a two dimensional nano-sheets soaked in the prepared polymer matrix with losing the original fibrous structure of Attuplgite clay.
In this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.
... Show MoreSelf-compacting concrete (SCC) has undergone a remarkable evolution recently based on the results from several studies that have indicated the chain of benefits SCC provides. Micro and nano materials used as mineral additives in SCC offer several high-performance properties, and this research studies the effects of micro silica (MS) (10%, used as a reference) and colloidal nano-silica (CNS) (2.5%, 5%, 7.5%, and 10%) on the fresh and hardened properties of SCC. All mixtures were estimated using flow, L-box, and V-funnel tests to examine workability and compressive strength, modulus of elasticity and tensile strength as hardened properties. The use of CNS increased the overall compressi