Background: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group, with a highly significant difference (P <0.01) among groups. FTIR chemical analysis for oxygen plasma treated acrylic resin specimen group showed a spectrum with a broad peak, which represents the hydroxyl group (-OH). This was an important chemical change that increased the hydrophilicity as compared with FTIR spectrums of control and argon plasma treated acrylic resin groups which exhibited relatively the same peaks with mild chemical changes. Conclusion: Application of oxygen and argon plasma treatment represents an effective surface treatment method for increasing the surface roughness of acrylic resin denture base polymer material. Oxygen plasma treatment can activate the treated surface towards further chemical reactions, and increase the hydrophilicity of the acrylic resin denture base polymer material. Key words: Acrylic resin polymer, plasma treatment, surface roughness, FTIR analysis.
Background: For decades, the use of naturally accessible materials in treating human disease has been widespread. The goal of this study was to determine the anti-fungal effectiveness /of the lemongrass essential oil (LGEO) versus Candida albicans (C. albicans) adhesion to polymethylmethacrylate (PMMA) materials. Material and methods: LGEO's anti-fungal activity was tested against C. albicans adhesion using the following concentration of LGEO in PMMA monomer (2.5 vol. %, 5 vol. % LGEO) selected from the pilot study as the best two effective concentrations. A total of 40 specimens were fabricated for the candida adherence test and were subdivided into four equal groups: negative control 0 vol. % addition, experimental with 2.5 vol. % and
... Show MoreThis study was design to investigate the dimensional stability of heat-activated acrylic resin with different methods of flask cooling (15 minutes rapid cooling, one hour bench cooling, four hours delayed deflasking, and 24 hours delayed deflasking) at different time intervals (immediately, two days, seven days, 30 days) after deflasking. Heat-activated acrylic resin was used to prepare acrylic samples. Then, measurement of the distances where achieved between the centers of selected marks in the acrylic samples. They were measured at different time intervals for different methods of flask cooling. The results showed that the group samples of the four hours and 24 hours of delayed deflasking was insignificantly different from the control an
... Show MoreThis study was conducted in an orchard pomegranate's Department of Horticulture College of Agriculture, University of Baghdad for two seasons 1999-2000 on cultivars pomegranate Salimi and narrators seedless to study the effect spraying Nizant growth in sex ratio of flowers and recipes flowering and winning was selected 27 trees per class 15 years old planted
In this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
The structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici
... Show MoreBackground: Imprelon® Biostar foils are new alternative tray material that has become increasingly popular because oftheir several advantages. Also, (Duran®) is another type of Biostar foils which is used in splint therapy. This study assessed some mechanical properties of these two types Biostar sheets in comparison with some types of acrylic resins used for construction of trays and splints. Materials and Methods: A total of 150 specimens were prepared, 30 specimens for each test, 10 for each group material in order to assess some mechanical properties of the Imprelon® Biostar foil (dimension stability, surface roughness and shear bond strength of Imprelon® materialto zinc oxide impression material) and compare them to that of the oth
... Show MoreDuring the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu
This paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show More