Background: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and methods: Thirty extracted primary molar teeth and thirty extracted permenant premolar teeth were used in this study 20 for each material, then standardized Class V cavities of teeth was prepared in the buccal and lingual surfaces. Using Polyacid-modified composite Resin (Compomer), flowable composite resin and Resin-modified glass Ionomer RMGI. The samples will be divided into three groups according to type of restorative material used and light cured with a light cure device (Ivoclar Vivadent Bluephace), after complete curing the sample will examined by Scanning electron microscope (SEM) and then measure the microleakage. Results: The RMGI shows the statistically significantly lowest mean value of microleakage, followed by Compomer shows statistically significantly lower mean value. Flowable Composite shows the statistically significantly highest mean microleakage. There is no statistically significant difference in microleakage values between the permanent and primary teeth. Conclusion: The Resin-modified glass Ionomer is better in term of microleakage than Polyacid-modified composite Resin and Flowable Composite.
This paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show MoreCredit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreQuercetin, one of the flavonoids family member, can be found in many vegetables, fruits, and beverages with a noticeable nutritional pharmacological properties. This study was aimed to evaluate the ability of quercetin to inhibit lipopolysaccharide (LPS) that induced lethal toxicity in vivo, and to elucidate the importance of the quercetin as an antitumor agent in breast cancer cell line MCF-7.In vivo experiments included the effect of hesperidin and LPS on the liver and spleen of male mice. In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH), and catalase (CAT), while in the spleen, the concentration of cytokines was measured including IL-33 and TNF-α. In vitro experiments included MTT
... Show MoreIn this research, the size strain plot method was used to estimate the particle size and lattice strain of CaTiO3 nanoparticles. The SSP method was developed to calculate new variables, namely stress, and strain energy, and the results were crystallite size (44.7181794 nm) lattice strain (0.001211), This method has been modified to calculate new variables such as stress and its value (184.3046308X10-3Mpa) and strain energy and its value (1.115833287X10-6 KJm-3).
This study was conducted to describe a protocol for the callus establishing culture of Lavandula angustifolia plant and estimating their content of volatile oil. The quantity of volatile oil callus tissues was compared with that of leaves production. Callus was induced from leaf explants on Murashige and Skoog medium (MS) supplemented with Naphthalene acetic acid (NAA) and Benzyl adenine (BA) in different concentrations. Maximum callus fresh weight was obtained in the combination of 10 mg/L BA and 3 mg/L NAA which reached 18 g after four weeks. The results of this work showed that the quantity of volatile oil from the highest fresh weight callus was 6 ml compared with quantity of 18g of leaves which gave 0.5 ml. Volatile o
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in
... Show MoreAn experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a res
... Show More