Background: Understanding the morphological characteristics between the floor of the maxillary sinus and the tips of the maxillary posterior roots is crucial in orthodontics involving diagnosis and treatment planning. The aim of this study was to evaluate the distances from the maxillary posterior root apices to the inferior wall of the maxillary sinus, thickness and density of maxillary sinus floor using cone-beam computed tomography images and the relationships between roots and maxillary sinus according to gonial angle and skeletal pattern. Materials and methods: Three-dimensional images of each root were checked, and the distances were measured along the true vertical axis from the apex of the root to the sinus floor, and the thickness and density of maxillary sinus floor in 60 patients (30 males, 30 female) aged 18 to 25 years. Evaluation of the differences between groups which classified to gonial angle and skeletal pattern which were done according to the comparsion between the mean statistic tests. Results: results showed that the density of floor of maxillary sinus at the first molar roots region in class III were significantly lower than class I and II, also the distance between the floor of maxillary sinus and both distobuccal and palatal roots of first molar were significantly lower in class I than other classes, while the thickness of maxillary sinus floor at the distobuccal root of first molar were significantly higher in class III than other classes. In gonial angle difference, the maxillary sinus floor density and distance to the maxillary posterior roots had no significant difference in all groups, while the thickness of maxillary sinus floor at distobuccal and palatal of second molar roots region were significantly higher in large gonial angle than small and normal angles. Conclusion: subjects with class I skeletal pattern have small distance between the maxillary sinus floor and the maxillary posterior roots due to the pneumatisation of maxillary sinus causing more difficult and time consuming orthodontic treatment.
Image compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show MoreAllopurinol derivative were prepared by reacting the (1-chloroacetyl)-2-Hydropyrazolo{3,4-d}pyrimidine-4-oneiwith 5- methoxy- 2-aminoibenzothiazoleiunder certain conditions to obtain new compound ( N- (2-aminoacetyl (5-methoxy) benzothiazole -2yl) (A4), Reaction of 5-(P-dimethyl amine benzene)-2-amino-1,3,4- oxadiazole in the presence of potassium carbonate anhydrous to yield new compound (N-(2- aminoacetyl-5-(P-dimethyl amine benzene )-1,3,4-oxadiazoles-2-yl)(A30) and Azo compound (N-(5-(Azo-2-hydroxy-5-amino benzene)-1,3-Diazol-2yl)Allopurinol(A46). The structure of prepared compounds were confirmed by (FT-IR)
... Show MoreSoftware Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show MoreAluminum Metal Matrix Composites (ALMMCs) was prepared by using stir casting technique for AA 7075 aluminum alloy as a matrix reinforced with SiC particles at various percentages (3, 6, 9 and 12 wt. % ) and 75µm in grain size. The prepared composite material can be used for many applications such as aerospace, automobiles and many industrial sectors. Abrasive wear test was carried out by two stages: the first stage was done by changing the emery papers at various grit sizes 180, 320, 500, and 1000µm with constant applied load 15N. While the second stage was carried out by changing the applied loads 5, 10, 15, 20 and 25N with constant emery paper at 320 µm grit size. Microstructure examination, hardness test and roughn
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreImpact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MorePoly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free