Background: The quantity and the quality of available bone, influence the clinical success of dental implants surgery. Cone beam Computed tomography is an established method for acquiring bone images before performing dental implant. Cone beam computed tomography is an essential tool for treatment planning and post-surgical procedure monitoring, by providing highly accurate 3-D images of the patient's anatomy from a single, low-radiation scan which yields high resolution images with favorable accuracy. The aim of study is the Measurement of alveolar bone (height and buccolingual width) and density in the mandible among Iraqi adult subject using CBCT for assessment of dental implant site dimensions. Material and method: The study sample include (60) Iraqi subjects (30 male and 30 females) aged between 20-65 years, sagittal view of Cone beam computed tomography was obtained to measure the height ,width and alveolar bone density of the mandibular anterior area, while coronal view was used to measure the height ,width and alveolar bone density assessment of the mandibular premolar and molar areas. Measurement of mandibular bony height and width was in(mm)and each of the three mandibular areas were represented by seven consecutive measurements for bony height and width and these seven stations were set using an average distance of 2 mm apart while the bone density in Hounsfield unit (HU) with point of measurement represent the mean of density to the area located between the height and buccolingual width. Results:The Statistical analysis of linear measurements of mandibular bone which include the bony height , width and density showed that the mean values of all three measurements are significantly higher in males than females also there was statistically significant difference in the mean bone density of mandibular areas which was highest in anterior area and lowest in the molar area followed by premolar area among both gender, mandibular bony height showed a statistically insignificant very weak negative linear correlation with age in all the three examined mandibular areas while the effect of age on bucolingual width was significantly higher among subjects older than 50 years compared to those younger than 50 years old. Conclusion: The mean bony height was highest in anterior area and lowest in premolar area followed by molar area, while the mean bony width was lowest in anterior area and highest in molar area followed by premolar area , finally the mean bone density was highest in anterior area and lowest in molar area followed by premolar area.
Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.
Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreCNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d
... Show More<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show More