Background: Wound healing is a complex dynamical interaction between various cell types, the extracellular matrix, cytokines, and growth factors. osteoponetin is a substance that acts as an anti-inflammatory. Aims of study: The study was designed to identify the role of local exogenous applications of osteopontin on wound healing (in cheek skin). Materials and methods: Thirty adult male albino rats weighting an average of (250-300gm) used in this study, incisional wounds were made in the skin of the cheek of rat and they were divided into the following groups: A-Control group: 15 rats treated with 1µ l of normal saline B-Experimental groups: 15 rats treated with topical application of 1µl osteopontin. The scarification of animals were done for the healing intervals (1, 5 and 10 days) Histological analysis and assessment of number of inflammatory cell, Thickness and contraction of incision were performed for both experimental and control groups for all healing periods. Results: Histological analysis revealed that osteopontin accelerate wound healing of cheek skin and there was highly significant difference among studied groups in periods 1,5,10 days. Regarding mean values of epithelial thickness, inflammatory cell count and contraction of wound area have reported a highest value different in 1, 5 and 10 days durations. Conclusion: It can be concluded that application of osteopontin shown efficacy in the healing of skin wounds induced in rats.
Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake). In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and
... Show MoreThis research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show MoreGlobal technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreDue to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreApplying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melti
... Show MoreThe study investigates the relationship between the volatility of the Iraqi Stock Exchange Index (ISX), and the volatility of global oil prices benchmarks, Brent and West Intermediate Texas (WTI), in additional to the Iraqi Oil, Basra Crude Light (BSL) which represents the most exported Iraqi oil and the major influential factor on the Iraqi governmental revenues. Using monthly data covering the period: 1/2005-12/1205, econometrical and technical tools represented by Co-incretion, Vector Error Correction Model – VECM, Granger Causality, and Bollinger band were employed in order to explore the relationship between the variables.
The econometric analysis revealed the impact of the oil prices volatility on
... Show MoreThis research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio
... Show More