Background: The use of the cone beam computed tomography for analysing the position of the greater palatine foramen in relation to various anatomical landmarks is crucial in dentistry. The aims of the current study, firstly is to determine the greater palatine foramen position in relation to various anatomical landmarks by using cone beam computed tomography and secondly is to make a comparison of the measurements according to side, gender, and age. Materials and methods: This prospective study included 60 Iraqi patients (28males and 32 females) who selected according to availability of Inclusion criteria, which include age range (21 - 60 years), with no dentofacial deformities or pathological lesion at the maxilla. All patients had informed consent of this study. Measurements were taken for the distance from the greater palatine foramen to the pterygoid hamulas of sphenoid bone in sagittal view and from greater palatine foramen to alveolar ridge in the axial view by using cone beam computed tomography. Results: The average distances of the greater palatine foramen to the pterygoid hamulus and alveolar ridge were 9.16 ±1.14 mm and 5.16 ± 0.84 mm respectively, there was no significant difference of distance according to side, gender although the distances higher in male more than female, but there was significant difference according to age. Conclution: The use of cone beam computed tomography could prevent the complications of procedures carried out in the region of greater palatine foramen. The average distances from the greater palatine foramen to the alveolar ridge and pterygoid hamulus were statistically not significantly differ according to side, gender, but there was significant difference according to age.
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show More