Background: Low-level laser therapy (LLLT) has been extensively applied to improve wound healing due to some biostimulatory properties presented by laser arrays apparently able to accelerate the repair of soft tissue injuries. However, the role of proinflammatory interlukines not been studied yet. IL_1 ? represent one of the most important poroinflammatory interlukines that involved in wound healing. The goal of this study was to investigate the effect of 790-805nm diode laser on the expression of IL_1 ? during wound healing in mice. Materials and Methods: Standard-sized wounds (1.5cm) were carried out in the face of 96 white albino mice. Half of them underwent LLLT treatment (360 J/cm 2) at 790-805 nm delivered immediately after wound procedure. The repairing area was removed and stained with immunohistochemistry technique to detect the expression of IL_1 ?. Results it had been found that LLLT was able to increase the expression of the IL_1 ? in early phases of healing as well as to enhance epithelization remodeling process at both 7 th and 14 th days of wound healing. Conclusions : The LLLT protocol tested in this study resulted in increased the expression of IL_1 ? in the lased group significantly at day 7 of healing period which affect wound healing.
The expenditures of the general budget, in its operational and investment divisions, are a basic factor in the economic and social growth of any country, and its impact on various economic activities such as income, employees , and the standard of living of members of society. This was based on a basic premise: Does increasing or decreasing investment expenditures have an effect on increasing or decreasing the tax proceeds, What is the level of relationship between them? and to achieve the goal of the research, an inductive and analytical method was chosen to measure the impact of the investment budget expenditures on the tax outcome quantitatively using the financial data obtained from The General Authority for Taxes, Ministry of Financ
... Show MorePurpose: the purpose of this study is to investigate how managers working for the General Authority for Irrigation and Reclamation Projects react to the impact of Emotional Intelligence (EI) on their performance. Theoretical framework: The current study includes an intellectual framework on two variables, namely EI and Manager Performance (MP), because it is essential to investigate the relationship between these two variables and the impact of EI on MP. Design/methodology/approach: The research problem is that a manager's capacity to make wise decisions about their work or interactions with subordinates is diminished when they have inadequate EI. The questionnaire is used as a tool for gathering data for the study, and the st
... Show MoreThe ideas and information obtained by the viewer in the cinema have always been the source of the visual image, but that doesn’t negate the fact that the mental image can produce a lot of the information and ideas in the cinematic art and the most important means to achieve this mental image in the film is the eloquent cinematic sound. This research is conducted to show this important and effective contribution of the sound in the production of the mental image. Hence the importance of this research is in that it addresses an important issue which is the eloquent performance of the sound and its role in the production of the mental image inside the space of the feature film. This research concerns those working the field of cinema and
... Show MoreAbstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreIn this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreTo learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse
... Show More