Background: The longevity of any prosthesis depends on the materials from which it was fabricated, that is why, defects in the material properties may reduce the service life of prosthesis and necessitate its replacement. The aim of this study was to evaluate the effect of adding different concentrations of Polyamide-6 (Nylon-6) on the tear and tensile strength of A-2186 RTV silicone elastomer. Materials and Methods: 80 samples were fabricated by the addition of 0%, 1%, 3% and 5% by weight PA-6 micro-particles powder to A-2186 platinum RTV silicone elastomer. The study samples were divided into four (4) groups, each group containing 20 samples. One control group was prepared without PA-6 micro particles and three experimental groups were prepared with different percentage of PA-6 micro particles (1%, 3%, and 5%) by weight. Each group was further subdivided into 2 groups according to the conducted tests, i.e. tear and tensile strength tests (n=10). The data were analyzed with a descriptive statistical analysis, one-way ANOVA, post-hoc LSD test. Results: The mean value of tear and tensile strength of 1% PA-6 reinforcement group increased significantly when compared to control group on the contrast to the same values of 3% and 5% PA-6 reinforcement groups which were decreased significantly. Conclusion: the 1% PA-6 reinforcement improved tear as well as tensile strength among all other percentages (0%, 3% and 5%).
Background: Polishing technique for acrylic resin material have great effect on properties of acrylic material and bacterial colonization such as staphylococcus aurous, which are responsible for many acrylic prosthetic infections such as the commonly ocular infections. Ineffective polishing technique could affect roughness and subsequently porosity of acrylic materials.So, a new effective method for polishing acrylic was used depending on the use of optiglaze coating material. So, this study aimed to evaluate the effect of optiglaze polishing on porosity of acrylic resin material and staphylococcus aurous activity in comparison to conventional polishing technique.
Materials and methods: Specimen(n=120) were prepared :20 spe
... Show MoreIn this paper a thin films of selenium was prepare on substrates of n-Si by evaporation in a vacuum technique with thickness about 0.5μm. And then an annealing process was done on samples at two temperature (100 and 200) C ° in a vacuum furnace (10-3 torr).
Some structural, optical and mechanical properties of prepared thin films were measured. Results showed that the prepared film was the crystallization, optical transmittance and micro hardness of the prepared thin films increased significantly after annealing.
Samples prepared by using carbon black as a filler material and phenolic resin as a binder. The samples were pressed in a (3) cm diameter cylindrical die to (250)MPa and treated thermally within temperature range of (600-1000)oC for two and three hours. Physical properties tests were performed, like density, porosity, and X-ray tests. Moreover vicker microhardness and electric resistivity tests were done. From the results, it can be concluded that density was increased while porosity was decreased gradually with increasing temperature and treating time. In microhardness test, it found that more temperature and treating time cause more hardness. Finally the resistivity was decreased in steps with temperature and treating time. It can be c
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreThe increasing population growth resulting in the tremendous increase in consumption of fuels, energy, and petrochemical products and coupled with the depletion in conventional crude oil reserves and production make it imperative for Nigeria to explore her bitumen reserves so as to meet her energy and petrochemicals needs. Samples of Agbabu bitumen were subjected to thermal cracking in a tubular steel reactor operated at 10 bar pressure to investigate the effect of temperature on the cracking reaction. The gas produced was analyzed in a Gas Chromatograph while the liquid products were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Heptane was the dominant gas produced in bitumen cracking at all temperatures and the r
... Show MoreThe present study aimed to explain the dose-dependent possible deleterious effects of 30 day administration of Tramadol on some hematological and biochemical parameters of laboratory male rats (Rattus norvegicus), the study consisted of eighteen adult male rats randomly divided into three equal groups (each of six). Group 1 (control) were treated by intraperitoneal injection of normal saline solution (0.2 ml), group two (low dose) was treated by intraperitonealy (i.p) injection of Tramadol at a dose of 50 mg/kg/day, group three (high dose) was treated by intraperitonealy injection of Tramadol at a dose of 100 mg/kg/day for 30 days. At the end of experimental period, rats were sacrificed. Blood were collected by cardiac puncture to inv
... Show MoreCadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di
... Show MoreOptoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show MoreIn the present work, nanocomposite of poly (vinyl alcohol) (PVA) incorporated with functionalized graphene oxide (FGO) were fabricated using casting method. PVA was dispersed by varying content of FGO (0.3, 0.5, 0.8, 1 wt %). The PVA- FGO nanocomposite was characterized by FT‐IR, FE-SEM and XRD. Frequency dependence of real permittivity (ε’), imaginary (ε’’) and a.c conductivity of PVA/FGO and PVA/GO nanocomposite were studied in the frequency range 100 Hz- 1 MHz. The experimental results showed that the values of real (ε’) and imaginary permittivity (ε’’) increased dramatically by increasing the FGO content in PVA matrix. PVA/ FGO (1 wt %) nanocomposite revealed higher electrical conductivity of 6.4×10-4 Sm-1 compared to
... Show More