Background: Reduction in bond strength when bonding was done immediately after intracoronal bleaching procedure has been recognized. The purpose of this study is to assess the effect of antioxidants (10% sodium ascorbate (SA), 0.1M thiourea and7% sodium bicarbonate (SB)) on reversing bonding strength of composite resin to bleached dentin. Materials and method: Sixty upper 1st premolar teeth, were selected, the crowns of the teeth were embedded in acrylic resin blocks exposing a flat dentin from the buccal surface, then divided into 6 groups (10 samples each). Bleaching for the experimental groups was performed using 35% hydrogen peroxide bleaching gel (pola–office).Group A (Negative control group; dentin samples immediately bonded with composite without bleaching)Group B (Positive control group; dentin samples bleached and immediately bonded with composite). Group C (Dentin samples bleached and stored for 14 days in DDW then bonded with composite). Group D (Dentin samples bleached and treated with 10% (SA) then immediately bonded with composite). Group E (Dentin samples bleached and treated with 0.1M thiourea then immediately bonded with composite). Group F (Dentin samples bleached and treated with 7% SB then immediately bonded with composite).The shear bond strength was determine using instron testing machine. Results: Bleaching the dentin with 35 % hydrogen peroxide gel for 24 minutes resulted in reduction in bond strength of the bleached teeth when bonding was performed immediately after bleaching. Delayed bonding of composite to the bleached dentin for 14 days will result in a highly significant increase in the shear bond strength. Conclusion: Treating the bleached dentin with 10% (SA) in water base showed a highly significant increase in the shear bond strength of the composite to dentin and reversing the bond strength value to the level of the unbleached dentin. Treating the bleached dentin with 0.1M thiourea significantly increased the shear bond strength of the composite to dentin.
Objective: One of the most important practical deficiencies of present denture base materials is fracture, therefore many
attempts have been made to reinforce of the repaired denture base resin. A desirable objective for this service is to obtain
optimum strength for repairs, which can be achieved by making available a good bond between original and repaired
materials.
Methodology: The present study was carried out to evaluate and compare the transverse strength of acrylic specimens
repaired by two different materials (hot-cure and cold-cure acrylic resin). A total of 50 specimens were prepared by hot
(40) repair: (10) by hot with retention bead, (10) by cold with retention bead and (10) repair by hot only, (10) repair
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MorePrednisolone (SAID) was conjugated with ibuprofen (NSAID) through an amino acid (glycine) as a spacer arm to synthesize the following compound:
Prednisolone – glycine – ibuprofen.
The method employed consists of converting the carboxylic acid function of (R,S) – ibuprofen – glycine to the highly reactive acid chloride and subsequent reaction with the C21 hydroxyl group of prednisolone. This reactive intermediate was found to react as well with the C17 tertiary hydroxyl group of the steroid to form three compounds and eight diastereomers. These results were confirmed by T.L.C, and the desired compound was separated by column chromatograph
... Show MoreBackground: One of the most common complications of dentures is its ability to fracture, so the aim of this study was to reinforce the high impact denture base with carbon nanotubes in different concentrations to improve the mechanical and physical properties of the denture base. Materials and methods: Three concentrations of carbon nanotubes was used 0.5%, 1%, 1.5% in a pilot study to see the best values regarding transverse strength, impact, hardness and roughness test, 1 wt% was the best concentration, so new samples for control group and 1wt% carbon nanotubes and the previous tests were of course repeated. Results: There was a significant increase in impact strength and transverse strength when we add carbon nanotubes in 1wt%, compared
... Show MoreSIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and
... Show More