Background: Surgical injury to alveolar bone can temporarily accelerate tooth movement by increasing the remodeling rate of alveolar bone. The purpose of this study was to clinically evaluate maxillary canine retraction acceleration with corticotomy-facilitated orthodontics, and its effect on vitality of pulp and gingival sulcus depth. Materials and method: The sample consisted of 12 adult patients (4 males, 8 females; mean age, 21.7 years) requiring the therapeutic extraction of the maxillary first premolars, with subsequent retraction of the maxillary canines. Surgical holes were done mesially and distally to the side with more space between canine and second premolar, and the other side served as the control. Canine retraction was done by power chain applying 200 g of force per side. Rate of canine movement and potential molar anchorage loss were measured after one month using study model and acrylic plug. Bleeding on probing, radiographical assessment, gingival sulcus depth, and vitality test have also been investigated throughout the study. Result: The surgical side showed a statistically higher retraction mean value as compared with the non-surgical side. In other words, the surgical side demonstrated 42.6% greater net canine distalization than the non-surgical side. Anchorage loss showed no significant difference between sides. There was no significant difference between the pre and post-surgery gingival sulcus depth and pulp vitality response values of surgical side. Conclusion: It has been concluded that surgical holes introduction is effective in accelerating orthodontic tooth movement, and has no harmful effects on surrounding vital structures and/or pulp vitality.
A hybrid Gas-Enhanced and Downhole Water Sink-Assisted Gravity Drainage (GDWS-AGD) process has been suggested to enhance oil recovery by placing vertical injectors for CO2 at the top of the reservoir with a series of horizontal oil-producing and water-drainage wells located above and below the oil-water contact, respectively. The injected gas builds a gas cap that drives the oil to the (upper) oil-producing wells while the bottom water-drainage wells control water cresting. The hybrid process of GDWS-AGD process has been first developed and tested in vertical wells to minimize water cut in reservoirs with bottom water drive and strong water coning tendencies. The wells were dual-compl
Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MoreMature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit
... Show MoreABSTRACT Background: This study measured the effects of three parameters pH value, length of immersion and type of archwire on metal ions released from orthodontic appliances. Materials and Methods: Ninety maxillary halves simulated fixed orthodontic appliances that were immersed in artificial saliva of different pH values (6.75, 5 and 3.5) during 28 day period. Three types of archwires were used: stainless steel, nickel titanium and thermal activated nickel titanium. The quantity of nickel and chromium ions was determined with the use of atomic force spectrophotometer while iron ions by spectrophotometer. Each orthodontic set was weighted two times, before the ligation and immersion in the artificial saliva and after 28 days at the end of
... Show MoreBackground: The aim of this study was to evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) of different orthodontic adhesive systems after exposure to aging media (water storage and acid challenge). Materials and methods: Eighty human upper premolar teeth were extracted for orthodontic purposes and randomly divided into two groups (40 teeth each): the first group in which the bonded teeth were stored in distilled water for 30 days at 37°C, and the second group in which the bonded teeth were subjected to acid challenge. Each group was further subdivided into four subgroups (10 teeth each) according to the type of adhesive system that would be bonded to metal brackets: either non-fluoride releasing adhesive (NFRA),
... Show MoreBackground: The purpose of this study is to compare the color changes between the bonded middle third and the unbonded gingival and incisal thirds, fallowing fixed orthodontic treatment Material and method: The color parameter l, a, b has been recorded for each thirds in upper anterior teeth by mean of easy shad device. The has been calculated for gingival, middle and incisal thirds for the upper anterior teeth in 34 patient, 17 males and 17femals, those subject undergone fixed orthodontic treatment Results: The in middle bonded third is highly significant higher than that in incise and gingival thirds p<0.01 because the middle third isn’t expose to oral fluid and dental brushing since it covered by the bracket. Also there
... Show MoreA robust and sensitive analytical method is presented for the extraction and determination of six pharmaceuticals in freshwater sediments.