Preferred Language
Articles
/
jbcd-1869
Assessment of mandibular third molar position by using computed tomography and reconstructed lateral radiograph
...Show More Authors

Background: Consideration of mandibular third molar is important from orthodontic perspective due to several factors such as, lower anterior arch crowding, relapse in lower anterior region, interference with uprighting of mandibular first and second molars during anchorage preparation and molar distalization. The aims of this study were to assess of gender differences in the mandibular third molar position and compare and evaluate whether there is any differences in the results provided by CT scan and lateral reconstructed radiograph. Materials and Methods: The sample of present study consisted of 39 patients (18 males and 21 females) with age range 11-15 years. CT images for patients who were attending at Al Suwayra General Hospital/the Computerized Tomography department. Computed tomographic images were obtained for The distance from Xi point to distal surface of permanent mandibular second molar was measured in both three dimensional volumetric images and two dimensional CT derived lateral image. The statistical analyses included: means, standard deviations. Paired t-test was used to compare between the two methods and independent t-test was used in verifying the genders difference. Results: The results showed that there was high significant method difference between 3D CT and 2D image and gender differences was observed in values of linear measurements of present study, as males showed higher mean values than females. Conclusion: There is high accuracy of measurement on CT images, so CT scan is advisable during the diagnosis and treatment plan of orthodontic cases.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Fri Nov 21 2025
Journal Name
Journal Of Advances In Information Technology
Towards Accurate SDG Research Categorization: A Hybrid Deep Learning Approach Using Scopus Metadata
...Show More Authors

The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Urinary Tract Stones Fragmentation using (2100 nm) Holmium: YAG Laser: (In vitro Analysis)
...Show More Authors

Urinary stones are one of the most common painful disorders of the urinary system. Four new technologies have transformed the treatment of urinary stones: Electrohydraulic lithotripsy, ultrasonic lithotripsy, extracorporeal shock wave lithotripsy, and laser lithotripsy.The purpose of this study is to determine whether pulsed holmium laser energy is an effective method for fragmenting urinary tract stones in vitro, and to determine whether stone composition affects the efficacy of holmium laser lithotripsy. Human urinary stones of known composition with different sizes, shapes and colors were used for this study. The weight and the size of each stone were measured. The surgical laser system which used in our study is Ho:YAG laser(2100nm)

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 26 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Secure Mobile Sink Node location in Wireless Sensor Network using Dynamic Routing Protocol
...Show More Authors

The important device in the Wireless Sensor Network (WSN) is the Sink Node (SN). That is used to store, collect and analyze data from every sensor node in the network. Thus the main role of SN in WSN makes it a big target for traffic analysis attack. Therefore, securing the SN position is a substantial issue. This study presents Security for Mobile Sink Node location using Dynamic Routing Protocol called (SMSNDRP), in order to increase complexity for adversary trying to discover mobile SN location. In addition to that, it minimizes network energy consumption. The proposed protocol which is applied on WSN framework consists of 50 nodes with static and mobile SN. The results havw shown in each round a dynamic change in the route to reach mobi

... Show More
Publication Date
Wed Feb 06 2013
Journal Name
Eng. & Tech. Journal
A proposal to detect computer worms (malicious codes) using data mining classification algorithms
...Show More Authors

Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete

... Show More
Publication Date
Thu Aug 30 2018
Journal Name
Journal Of Engineering
An Optimum Strategy for Producing Precise GPS Satellite Orbits using Double-Differenced Observations
...Show More Authors

Both the double-differenced and zero-differenced GNSS positioning strategies have been widely used by the geodesists for different geodetic applications which are demanded for reliable and precise positions. A closer inspection of the requirements of these two GNSS positioning techniques, the zero-differenced positioning, which is known as Precise Point Positioning (PPP), has gained a special importance due to three main reasons. Firstly, the effective applications of PPP for geodetic purposes and precise applications depend entirely on the availability of the precise satellite products which consist of precise satellite orbital elements, precise satellite clock corrections, and Earth orientation parameters. Secondly, th

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon May 15 2017
Journal Name
Journal Of Theoretical And Applied Information Technology
Anomaly detection in text data that represented as a graph using dbscan algorithm
...Show More Authors

Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Developing a Prosthesis Design using A Gearbox to Replicate the Human Hand Mechanism
...Show More Authors

Prosthetic is an artificial tool that replaces a member of the human frame that is  absent because of ailment, damage, or distortion. The current research activities in Iraq draw interest to the upper limb discipline because of the growth in the number  of amputees. Thus, it becomes necessary to increase researches in this subject to help in reducing the struggling patients.  This paper describes the design and development of a prosthesis for people able and wear them from persons who have amputation in the hands. This design is composed of a hand with five fingers moving by means of a gearbox ism mechanism. The design of this artificial hand has 5 degrees of freedom. This artificial hand works based on the principle of &n

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Variable Selection Using aModified Gibbs Sampler Algorithm with Application on Rock Strength Dataset
...Show More Authors

Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref