Background: Relapse of previously moved teeth, is major clinical problem in orthodontics with respect to the goals of successful treatment. This study investigated the effect of orthodontic relapse on the proliferation of fibroblast and epithelial rests of Malassez cells in periodontal ligament of rat molars. Materials and Methods: Sixteen ten-week- old male Wister rats were randomly divided into four groups composed of four animals each: Group I received no orthodontic force (control). In both Group II and Group III, uniform standardized expansive springs were used for moving the maxillary first molars buccally for periods of one and three weeks respectively. The spring initially generated an average expansive force of 20 g on each side. In Group IV the springs were left for three weeks, until the maxillary first molars moved buccally, after that the springs were removed and the animals were scarified after three weeks of relapse tooth movement. After the humanly scarification of animals, each maxilla in all groups was dissected into two halves each half including the three maxillary molars and processed for histological examination. The number of both fibroblast and ERM cells in each cluster was counted in the PDL of the pressure side of the mesio-buccal roots of the maxillary right and left first molars in all groups and the surface areas of the ERM clusters were also measured in all groups. Results: The number of fibroblast was significantly increased at the end of active movement (Group III) and significantly very highly increased during the relapse period (Group IV). Regarding the ERM cells there were statistically significant increase in both the number of cells in each ERM cluster and the surface areas of the ERM clusters in Group III and highly significant increase in Group IV, while Group II showed no significant differences regarding all measurements. Conclusions: It was concluded that fibroblast and ERM cells may play an important role during orthodontic relapse
This research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreWind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show MoreThe increased use of hybrid PET /CT scanners combining detailed anatomical information along withfunctional data has benefits for both diagnostic and therapeutic purposes. This presented study is to makecomparison of cross sections to produce 18F , 82Sr and68Ge via different reactions with particle incident energy up to 60 MeV as a part of systematic studies on particle-induced activations on enriched natNe, natRb, natGa 18O,85Rb, and 69Ga targets, theoretical calculation of production yield, calculation of requiredtarget and suggestion of optimum reaction to produce: Fluorine-18 , Strontium-82 andGermanium-68 touse in Hybrid Machines PET/CT Scanners.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More