Abstract Background: One of the most important methods to replace lost teeth is dental implants. In order to increase the strength of connection of the implant with the jaw bone to provide early loading after placement, implant is coated by different coating materials that achieved that purpose. The aim of this study was to evaluate the influence of coating CP Ti implant with calcium carbonate on the strength of bone-implant interface after two and six weeks of implantation in rabbit femur bone by torque removal test, histological and histomorphometric analysis. Materials and methods: Coating the surface of commercially pure titanium screws with extra pure synthetic calcium carbonate via electrophoretic deposition method (EPD) was done. The surface of disc samples after coating was checked by optical microscopy, X-ray diffraction examination and measurement of coating thickness. Ten male white French rabbits were prepared for implantation. Forty screws were implanted in the femur bone, two implant screws in each femur bone. The first screw is coated with calcium carbonate and compared with the second uncoated screw. Rabbits are divided into two groups according to the healing periods 2 and 6 weeks. By torque removal, the osseointegration is measured. Single screw from each group was used for histological and Histomorphometric analysis. Results: There was significant increased mean torque removal for screws coated with calcium carbonate compared with uncoated screws. Histological examination showed an increase in the growth of bone cells for coated screws, and the histomorphometric analysis showed an increase in new bone formation percent (NBFP). Conclusion: Coating the surface of the CP Ti implant with calcium carbonate via electrophoretic deposition method had great effect in increasing the osseointegration than uncoated surface.
Laser shock peening (LSP) is deemed as a deep-rooted technology for stimulating compressive residual stresses below the surface of metallic elements. As a result, fatigue lifespan is improved, and the substance properties become further resistant to wear and corrosion. The LSP provides more unfailing surface treatment and a potential decrease in microstructural damage. Laser shock peening is a well-organized method measured up to the mechanical shoot peening. This kind of surface handling can be fulfilled via an intense laser pulse focused on a substantial surface in extremely shorter intervals. In this work, Hydrofluoric Acid (HF) and pure water as a coating layer were utilized as a new technique to improve the properti
... Show MoreThis study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show MoreABSTRACT Background:Hydrogen absorption and related degradation in the mechanical properties of Ni-Ti based orthodontic wires has been demonstrated following exposure to fluoride prophylactic agents. This study was designed to investigate the effects of three fluoride containing agents on the load deflection characteristics of heat activated nickel titanium arch wires during unloading phase. Material and method: Eighty specimens of heat activated nickel titanium arch wires were obtained from Ortho Technology Company, half of which had a 0.016 inch round and 0.019x0.025 rectangular. Ten specimens from both wire size were immersed in one of the tested fluoride prophylactic agents (neutral sodium fluoride gel, stannous fluoride gel or phos-flu
... Show MoreIn this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is
... Show MoreIn the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o
... Show MoreBackground :The cotton factories have difference steps, spinning and weaving are van important parts of the factories. Cotton industry workers are exposed to various hazards in the different departments of textile factories. The major health problems associated with cotton dust are respiratory problems. Cotton workers display an excess of lung function abnormalities when compared to a community control population.
Aim of Study: This study assessed the effect of exposure to cotton dust in spinning and weaving workers on the lung function in Iraq, by measuring Forced Vital Capacity (FVC),Forced Expiratory Volume in the first second(FEV1), FEV1 ∕ FVC Ratio, and Forced Expiratory Flow 50%(FEF50%),with varying degree of reduction in lung
