Abstract Background: One of the most important methods to replace lost teeth is dental implants. In order to increase the strength of connection of the implant with the jaw bone to provide early loading after placement, implant is coated by different coating materials that achieved that purpose. The aim of this study was to evaluate the influence of coating CP Ti implant with calcium carbonate on the strength of bone-implant interface after two and six weeks of implantation in rabbit femur bone by torque removal test, histological and histomorphometric analysis. Materials and methods: Coating the surface of commercially pure titanium screws with extra pure synthetic calcium carbonate via electrophoretic deposition method (EPD) was done. The surface of disc samples after coating was checked by optical microscopy, X-ray diffraction examination and measurement of coating thickness. Ten male white French rabbits were prepared for implantation. Forty screws were implanted in the femur bone, two implant screws in each femur bone. The first screw is coated with calcium carbonate and compared with the second uncoated screw. Rabbits are divided into two groups according to the healing periods 2 and 6 weeks. By torque removal, the osseointegration is measured. Single screw from each group was used for histological and Histomorphometric analysis. Results: There was significant increased mean torque removal for screws coated with calcium carbonate compared with uncoated screws. Histological examination showed an increase in the growth of bone cells for coated screws, and the histomorphometric analysis showed an increase in new bone formation percent (NBFP). Conclusion: Coating the surface of the CP Ti implant with calcium carbonate via electrophoretic deposition method had great effect in increasing the osseointegration than uncoated surface.
Gypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t
Dermatophytes are a group of morphologically and physiologically related molds some of which cause well defined infections: dermatophytoses (tineas or ringworm). The present study aims at identification of dermatophytes species and varieties from patients in Wasit province-Iraq using molecular approach based PCR fingerprint.
The short oligonucleotide (GACA)4 is a microsatellite primer was used in this study for identification of dermatophyte isolates. The results identified different species and varieties among dermatophytes. The numbers of resulting PCR bands ranged from 1 to 4 (size range, 600bp to 1600bp) for each species. The resulting patterns were distinct for Trichophyton and Microsporum species and varieties.
Trichophyton s
Aspergillus flavus was tested for its ability to degrade naphthalene by using solid mineral salts medium (SMS) with different concentrations 100, 300, 500 ppm of naphthalene. Results showed that 100ppm was the best concentration consumed by the fungal test then 300ppm and 500ppm the results for secondary test by using Liquid Mineral Salts Medium (LMSM) 95% of degradation for 100ppm then75% for 300ppm and 30% of degradation for 500ppm then the fungal test was tested for its ability to produce lignolytic enzymes results revealed that lignin peroxidase enzyme was only produced .then fungal test exposed to U.V light and the result showed after 10 minutes of U.V light exposure the degradation ratio were 91% for 100ppm then 79% for 300ppm and
... Show MoreThe dipstick test was evaluated for sero-diagnosis of visceral leishmaniasis. We compared two types of dipstick (rKE16, rK39) tests . The sensitivity of both tests were determined using sera from fifty-two children suspected of having visceral leishmaniasis and thirty healthy children as a control group collected from Central Teaching Hospital of Pediatric in Baghdad. Fifty (96.15%) cases were confirmed to have infection by rKE16 dipstick test while, fourty-six (88.46%) cases were positive by rK39 dipstick test. Non of the sample taken from healthy control showed reactivity in any of these tests. The study indicated that rKE16 test had better sensitivity than rK39 in the diagnosis of VL(100%) ,(92 %) respectively.
In this manuscript divide into two parts the first experimental and the second theoretical. The experimental part of polyvinyl chloride (PVC) can be used with aluminum (30%). Nanomaterials are synthesized by a laser pulse melting solution by ethanol. The effect of laser on the structural, morphological, optical, and electrical properties of nanoparticles (PVC) was examined by UV spectroscopy, x-ray diffraction (XRD), electron microscopy (TEM). The theoretical part of the DFT can be used to approximate the generalized gradient of the Perdew, Burke, and Ernzerhof (PBE) / 6-31G (d) groups, which were created using additional Gaussian 09 software through Gaussian 5.08. To build PVC nanocrystal pure which chemical formula [(C2H3Cl)n] and build (
... Show MoreTwo methods were established to separate cobalt from the spent catalyst CoMo which also contain Co, Al and Fe. The first method was the precipitation technique by controlling the pH. At pH 5, 76% of the cobalt which was collected with 1.4% Al and 0.5% Fe as contaminants. The second method was the anion exchange by using Amberlite 400 resin, 100% of the cobalt and was collected with 99.46% purity.The only contaminant was Fe with 0.54% with no Al. For a large scale production of cobalt from this spent catalyst, a batch process was designed with a production of 80 grams per batch by using the anion exchange technique. Kilograms quantities of Co were collected.
Polypyrrole/silver (PPy/Ag) nanocomposites was synthesized via a chemical oxidative method. The AFM analysis is performed to study the surface roughness, morphology and size distribution of the PPy particles and PPy-ag nanocomposites. The results indicated that as the concentration of Ag in the nanocomposite increases, the roughness also increases. The size of nanoparticles was also evaluated and found in the range of 15 nm to 125 nm. The PPy/Ag nanocomposites exhibited an effectiveness against Gram-negative Escherichia coli showing an inhibition zone of 4mm and displayed poor efficacy against Gram-positive Staphylococcus aureus. Based on given adequate antibacterial characteristics of PPy/Ag nanocomposites, it can be identified as a pro
... Show MoreTo learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse
... Show More