Background: Asymmetry assessment is an important component of orthodontic diagnosis and treatment planning. Several studies attempted to find the relationship between craniometric asymmetry and skeletal jaws relationship and many authors found some extent of asymmetry in individuals with normal jaws relationship. The use of Computed tomography (CT) allows for the assessment of asymmetry on a dimensionally accurate volumetric image, aim of the study is to determine if there are differences in craniometric asymmetry between patient with skeletal class I and patients with skeletal class II relationship using Helical CT scan. Materials and Methods: Ninety individuals with clinically symmetrical faces were imaged with Helical CT scan, and aging 18-35 years, divided into two groups, class ? group consisted of 31 individuals and class ?? group consisted of 59individuals. Anatomical landmarks were defined and reference planes were established to determine the variance of the landmarks using a coordinate plane system. Sagittal radiographs were used to determine the amount of the ANB angle. Asymmetry was analyzed by calculating the linear measurements and asymmetry indices of the anatomical landmarks by using coronal and axial radiographs in both classes. Results: Clinically symmetrical faces demonstrated a computed tomographic significant asymmetry with the vertical dimensions being significantly larger than the bilateral dimensions and the amount of asymmetry was more at the level of the mandible and less at the maxillary area. Conclusions: The craniometric structures in terms of size and shape were larger in males than in females. The amount of asymmetry was independent on gender and skeletal jaws relationship and age.
Uranium concentrations in soil were determined for ten locations in Salahdin governorate using CR-39 track detector, fission fragments track technique was used, the nuclear reaction of nuclear fission fragments obtained by the bombardment of 235U with thermal neutrons from (Am-Be) neutron source with flux (5000n.cm-2.s-1), the concentration values were calculated by a comparison with standard samples. The results of the measurements show that the uranium concentration in soil samples various from 0.42±0.018ppm in Beji province to 0.2±0.014 ppm in Tooz province with an average (0.31±0.08ppm), the values of uranium concentration in all samples are within the permissible limits universally.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreTo ascertain the stability or instability of time series, three versions of the model proposed by Dickie-Voller were used in this paper. The aim of this study is to explain the extent of the impact of some economic variables such as the supply of money, gross domestic product, national income, after reaching the stability of these variables. The results show that the variable money supply, the GDP variable, and the exchange rate variable were all stable at the level of the first difference in the time series. This means that the series is an integrated first-class series. Hence, the gross fixed capital formation variable, the variable national income, and the variable interest rate
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
In the present study, advanced oxidation treatment, the TiO2 /UV/H2O2 process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolori
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show More