Preferred Language
Articles
/
jbcd-160
Evaluation of the stress concentration of different incisal ridge preparations of porcelain veneers (Finite element analysis)

Background: Porcelain veneers are under a great deal of stress which may lead to clinical failure as fracture or dettachment. This study examined whether different finishing lines and lingual shoulder preparations in the incisal area of the maxillary central incisor affect the bond of the porcelain veneers. Materials and methods: A two- dimensional finite element model was made. Location and magnitude of maximum Von Mises stresses were calculated in porcelain veneer. Six types of preparations were drawn as:incisal overlap of 0.5mm, 1mm and 1.5mm depth and lingual shoulder, and incisal overlap of 0.5mm, 1mm and 1.5mm depth without shoulder preparation. Results: Stress formation is maximum in the incisal edge region. All the lingual shoulder preparations presented better stress distribution than the non shoulder preparations Conclusion: Stress is distributed more evenly when the tested preparation possesses a good thickness of porcelain and the more the surface area with incisal overlap the less possibility of bond failure.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 25 2021
Journal Name
Dental Materials Journal
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Finite Element Analysis of UHPC Corbels

   Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws  and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
 

View Publication Preview PDF
Publication Date
Tue Nov 19 2024
Journal Name
Journal Of Baghdad College Of Dentistry
Finite element stress analysis study for stresses around mandibular implant retained overdenture MIR-OD

Background: It has been well known that the success of mandibular implant- retained overdenture heavily depends on initial stability, retention and long term osseointegration this is might be due to optimal stresses distribution in surrounding bones. Types of mandibular implant- retained overdenture anchorage system and number of dental implants play an important role in stresses distribution at the implant-bone interface. It is necessary to keep the stresses below the physiologic tolerance level of the bone .since. And it is difficult to measure these stresses around bone in vivo. In the present study, finite element analysis used to study the stresses distribution around dental implant supporting Mandible implant retained overdenture Mate

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Finite Element Analysis of Raft Foundation under Coupled Moment

Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FINITE ELEMENT ANALYSIS OF HUMAN AND ARTIFICIAL ARTICULAR CARTILAGE

Joint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Finite Element Analysis for the Damaged Rotating Composite Blade

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to ap

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Finite Element Analysis for The Response of URM Walls Supporting RC Slab

The aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show

... Show More
Crossref (1)
Crossref
Publication Date
Fri Oct 22 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
4D Finite element modeling of stress distribution in depleted reservoir of south Iraq oilfield
Abstract<p>The harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are</p> ... Show More
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Nov 19 2024
Journal Name
Journal Of Baghdad College Of Dentistry
The influence of shifting the class I cavity position prepared in posterior teeth buccally and lingualy on stress distribution (Finite element analysis study)

Background: Rehabilitation of the carious tooth to establish tooth structure integrity required cavity design that show a benign stress distribution. The aim of this study was to investigate the influence of the cavity position on the stress values in the reamining tooth structure restored with amalgam or resin composite. Materials and methods: Seven 2-D models of maxillary first premolar include class I cavity design was prepared, one sound tooth (A) 3 composite (B1, B2, and B3) and 3 amalgam (C1, C2, and C3). In design (BI and C1) the cavity position is in the mid distance between bacc-lingual cusp tip, design (B2 and C2) and (B3 and C3) shifted toward the buccal cusp and the lingual cusp for 0.5 mm respectively. One hundred N vertical

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 31 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Extended Finite Element Analysis of Reinforced Concrete Beams Using Meso-Scale Modeling

Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo

... Show More
Crossref