Background: Debonding orthodontic brackets and removal of residual bonding material from the enamel surface include critical steps that may cause enamel damage. The aim of the present study was to evaluate and compare the site of bond failure and enamel surface damage after debonding of three types of esthetic brackets (composite, ceramic, sapphire) bonded with light cure composite and resin-modified glass ionomer adhesive. Materials and methods: Seventy two maxillary premolars teeth were divided into three groups each group consisted of 24 teeth according to the type of brackets. Each group was subdivided into two subgroups (12 teeth for each) according to the bonding material that was used. After 7 days of bonding procedure, the brackets were debonded using specifically designed debonding device in which the brackets were debonded by a debonding pliers to simulate the actual clinical debonding procedure. Instron Universal testing was used to apply the debonding force on the debonding pliers which transferred to the bracket. The teeth and the brackets were examined with a 10X magnifying lens to evaluate the site of failure. After the removal of residual adhesive, stereomicroscope was used to evaluate enamel surface damage. Results: The most common type of bond failure was cohesive failure (Score II) in all esthetic brackets. While enamel cracks (scale I) were found to be the most type of enamel damage. Chi- square showed non-significant differences among different types of esthetic bracket bonded with same type of adhesive and between the same types of brackets (ceramic, sapphire) bonded with the two types of adhesive. On the other hand, there was significant difference between composite brackets subgroups bonded with the two adhesives. Conclusion: The bond failure mostly within the adhesive itself and higher enamel damage was resulted from mechanical debonding of these esthetic brackets.
This paper demonstrates an experimental and numerical study aimed at comparing the influence of openings of different configurations on the flexural behavior of reinforced concrete gable roof beams. The experimental program consisted of testing six simply supported gable beams subjected to mid-point concentrated load. The variable which has been investigated in this work was opening's configuration (quadrilateral or circular) with the same upper and lower chords depth. The results indicate improvement in the beams’ flexural behavior when circular openings were used compared with that of quadrilateral openings, represented by an increase in ultimate load capacity and a decrease in deflection at the service limit. Also, there was an
... Show More<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreBackground: Complete denture wearers show lower levels of bite force than dentate subjects. This has a significant influence on their chewing efficiency. In this study an attempt was made to investigate the effect of the impression technique on the maximum bite force in complete denture wearers. Materials and methods: The patients selected for this research were 12 edentulous patients. Three different techniques for registering the final impression were made; the mucostatic, mucofunctional, and the selective pressure impression technique. Two sets of upper and lower denture bases and one set of upper and lower dentures were constructed for each subject. Intraoral and extraoral instruments and devices, as well as a computer program were used
... Show MoreObjective(s): This study aims to evaluate the hardness of two commercially available cold cured acrylic resin material
(Vertex and PAN) when polymerized at different temperature in comparison to those polymerized by conventional
methods in air at 23C ± 5C.
Methodology: Eighty specimens, forty from cold cured acrylic (Vertex Type) and forty from cold cured acrylic (PAN
type) were prepared, flasking and packing procedure were done according to manufacturer direction and divided
according to processing as follow: 20 specimens (10 from Vertex type and 10 from PAN type) were processed in air for
two hours at 23C ± 5C under press (bench curing) as a control, and 60 specimens (30 from Vertex type and 30 from
PAN type) wer