Background: Chronic periodontitis defined as “an infectious inflammatory disease within supporting tissues of the teeth, progressive attachment loss and bone loss". Aggressive periodontitis is rare which in most cases manifest themselves clinically during youth. It characterized by rapid rate of disease progression .Pro-inflammatory chemokines organized inflammatory responses. Granulocyte chemotactic protein 2 is involved in neutrophil gathering and movement. The purpose of the study is to detect serum of Granulocyte Chemotactic Protein 2 and correlate to periodontal condition in patients with chronic periodontitis, Aggressive periodontitis and Healthy Control subjects and measurement the count of neutrophils for the studied groups. Subjects and methods: Eighty four male and female were enrolled in this study .They were divided into three groups (18) patients with Aggressive periodontitis with age range (20-45) years, (33) chronic periodontitis patients and (33) Healthy control with an age range (30-50). Clinical periodontal parameters were recorded for each group. The concentration of granulocyte chemotactic protein- 2 in serum was quantified by a high-sensitivity enzyme linked immunosorbent assay. Blood neutrophils count were detect for five subjects from each group using light microscope Result: ANOVA analysis revealed high significant differences in Granulocyte chemotactic protein 2 means between aggressive, chronic and controls. Neutrophils count in aggressive periodontitis is higher than chronic and controls .No significant difference in neutrophils count between aggressive and chronic periodontitis, while significant difference when correlate them with controls Conclusion The concentration of granulocyte chemotactic protein 2 increased with the increase in severity of periodontitis. Higher neutrophils count was found in aggressive periodontitis than chronic and controls. As higher granulocyte chemotactic protein 2 that chemoattract more neutrophils recruitment to the site of inflammation
Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreKE Sharquie, AA Noaimi, MM Al-Salih, Saudi Medical Journal, 2008 - Cited by 56
Background: Chronic hyperglycemia causes diabetic nephropathy(DN), which is a typical microvascular complication of type 2 diabetes mellitus. The pathogenesis of DN is not fully understanding. The inflammation may possess a significant role in the progression of DN in diabetic patients. Method: The study accomplished at teaching laboratories of medical city, Baghdad, Iraq. It was included 50uncontrolled diabetic type 2 patients with nephropathy, age range (40-78) years and 42 controlled diabetics type 2 without nephropathy, age range (35 - 52) years as a control group. The participants divided in to two groups according to HbA1c measurement which is described as follows: < 7.5% of HbA1c describes controlled diabetes, and > 9% of HbA1c
... Show More