Background: With the increased in the demands of adult orthodontics, the challenge of direct bonding to non-enamel surface (zirconium) had been increased. The present study was carried out to compare the shear bond strength of three different brackets (stainless steel, sapphire and composite) bonded to zirconium surface and study the mode of bond failure. Materials and methods: The sample was comprised of 30 models (8mm *6mm*1.5mm) of full contour zirconium veneers. They were divided into three groups according to the brackets type; all samples were treated first by sandblast with aluminum oxide particle 50 µm then coated by z-prime plus primer. A central incisor bracket of each group was bonded to the prepared zirconium surface with light cure adhesive resin (Transbond TM XT, 3M Unitek, USA). Shear bond strength was measured by using Tinius Olsen universal testing machine at crosshead speed of 0.5\min. After debonding, each bracket and zirconium surface were examined using magnifying lens and adhesive remnant index was recorded. The difference in shear bond strength between main groups was analyzed by using ANOVA at p≤0.05. Results: The results revealed high significant difference among all tested groups and the highest value was for sapphire brackets (7.49±1.45 Mpa) of all groups followed by stainless steel brackets (6.46±1.43Mpa) and composite brackets had the least value (4.35±0.72). Non-significant difference in the site of bond failure among all groups of brackets and zirconium-adhesive interface failure (score III) was the predominant. Conclusion: the new zirconium prime plus primer can be successfully used in bonding stainless steel and sapphire brackets to zirconium surface.
This study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show MoreObjective: Evaluate the effects of different storage periods on flexural strength (FS) and degree of conversion (DC) of Bis-Acryl composite and Urethane dimethacrylate provisional restorative materials. Material and Methods: A total of 60 specimens were prepared from four temporary crown materials commercially available and assigned to four tested groups (n = 15 for each group): Prevision Temp, B&E CROWN, Primma Art, and Charm Temp groups. The specimens were stored in artificial saliva, and the FS was tested after 24 h, 7 d, and 14 d. A standard three-point bending test was conducted using a universal testing machine. Additionally, the DC was determined using a Fourier transform infrared spectroscopy (FTIR) device. The data were analyzed st
... Show MoreBackground: As the development of zirconia crown using CAD/CAM technology, the usage of full zirconia crown is gradually increased. The aim of this in-vitro study was to evaluate and contrast the vertical marginal fit of single all-ceramic translucent zirconia crowns constructed from different brands translucent zirconia blanks. Materials and Methods: An acrylic resin model of a left maxillary premolar was prepared all around the tooth with (1 mm) depth and 3D scanning to get fifteen STL files, then distributed into three groups (Imes-icor, Whitepeaks and Dental direct), 3D scanning and milling machine by Imes-icor CAD/CAM devise. Marginal gaps along vertical planes were measured at four indentations at the (mid mesial, mid distal, mid bucc
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show Moreأن التطور العلمي الحاصل فيما يخص المجال الرياضي أرسى آفاق جديدة لمواكبة التطور الكبير في مجا ل الألعاب والفعاليات الرياضية المختلفة ,و أن تحقيق النتائج الجيدة في فعاليات العاب القوى بشكل عام والثلاثية بشكل خاص في التدريب الرياضي يتطلب إتباع الأساليب العلمية الدقيقة والموضوعية بشكل سليم ومخطط له،فضلا عنة تطبيق نظريات ومنحى جديد لمواكبة الاتجاهات الحديثة في تحقيق النتائج الجيدة للوصول إلى المستويات العالية
... Show MoreBACKGROUND: Three-dimensional (3D) printing is an evolving technology that has been used recently in a wide spectrum of applications. AIM: The objective is to evaluate the application of 3D printing in various neurosurgical practice. PATIENTS AND METHODS: This pilot study was conducted in the neurosurgical hospital in Baghdad/Iraq between July 2018 and July 2019. An X, Y, and Z printer was used. The working team included neurosurgeons, biomedical engineers, and bio-technicians. The procedure starts with obtaining Magnetic resonance imaging (MRI) or computed tomography (CT) scan in particular protocols. The MRI, and CT or angiography images were imported into a 3D programmer for DICOM images called 3D slice where these files con
... Show MoreThe Effect of Chicken Eggshell Extract on Microhardness of Artificially Induced Dental Erosion in Permanent Teeth (In Vitro Study), Shatha A Abbas*, Alhan A Qasim
<p>Recently, reconfigurable intelligent surfaces have an increasing role to enhance the coverage and quality of mobile networks especially when the received signal level is very weak because of obstacles and random fluctuation. This motivates the researchers to add more contributions to the fields of reconfigurable intelligent surfaces (RIS) in wireless communications. A substantial issue in reconfigurable intelligent surfaces is the huge overhead for channel state information estimation which limits the system’s performance, oppressively. In this work, a newly proposed method is to estimate the angle of arrival and path loss at the RIS side and then send short information to the base station rather than huge overhe
... Show More