Background: The type of dental implant surface is one of many factors that determine the success of implant restoration. This study aimed to study the effect of mixture of nano titanium oxide with nanohydroxyapatite coating of screw shaped CPTi dental implant on bond strength at bone implant interface by torque removal test related to two healing periods (2 and 6 weeks). Materials and methods: Dip coating process was performed to get an even coating layer on CPTi screws. X-ray diffraction (XRD) analysis and microscopical examination were performed on the coating surfaces of the CPTi. The tibia of 10 white New Zealand rabbits was chosen as implantation sites. The tibia of each rabbit received two screws, one was coated with mixture of nanoTio2and nanoHA and the other was coated with nanoHA and a total of 40 screws were implanted. Torque removal test was performed to measure bond strength between implant and bone, after 2 and 6 weeks healing periods. . Results: The results revealed, that the mean removal torque recordings for the mixture of nanoTio2and nanoHA coated screws was significantly greatly than the nanoHA covered screws over the two periods of time(2and6 weeks). There was an increase in the torque value with time. Conclusion: Commercially pure titanium implant coated with mixture of nanoTio2andnanoHApresented an increasing bond strength at bone implant interface than nanoHA , after 2 and 6 weeks (20.13±4.4 N.cm , 26.47±4 N.cm. ) in comparison to nanoHA coating after 2 and 6 weeks (15.16±2.5 N.cm , 20.12±2.3 N.cm) .
Background: Color stability of glass ionomers (GIs) could be affected by many factors such as pH and consumption of liquid medications like antibiotics. Most common antibiotics used during childhood are amoxicillin suspension (AM.S) and azithromycin suspension (AZ.S) which have acidic and basic pH respectively. Aim: to evaluate and compare the effect of AM.S and AZ.S on color stability of nano resin-modified GI. Methods: Thirty disc of nano resin-modified glass ionomer (2mm height x 4mm diameter) were divided into three groups (n=10 for each) and independently exposed to AM.S, AZ.S, and artificial saliva (A.S.). Color stability was evaluated in triplicate by VITA Easyshade® before and after three immersion protocols, repeated over a thr
... Show MoreBackground: Color stability of glass ionomers (GIs) could be affected by many factors such as pH and consumption of liquid medications like antibiotics. Most common antibiotics used during childhood are amoxicillin suspension (AM.S) and azithromycin suspension (AZ.S) which have acidic and basic pH respectively. Aim: to evaluate and compare the effect of AM.S and AZ.S on color stability of nano resin-modified GI. Methods: Thirty disc of nano resin-modified glass ionomer (2mm height x 4mm diameter) were divided into three groups (n=10 for each) and independently exposed to AM.S, AZ.S, and artificial saliva (A.S.). Color stability was evaluated in triplicate by VITA Easyshade® before and after three immersion protocols, repeated over
... Show MoreHigh-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall s
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreEffect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.
A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2
... Show MoreBackground: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning ele
... Show MoreThis research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show More