Background: The fracture of instruments within root canal during endodontic treatment is a common incidence, fracture because of fatigue through flexure occurs due to metal fatigue, this study aimed to assess the effect of curvature angle and rotational speed on the cyclic fatigue of different type of Endodontic NiTi Rotary Instruments and compare among them. Materials and method: Three types of rotary instruments with tip size 0.25: ProTaPer F2 (Densply, Malifier) Revo-S SU( 0.06 taper, MicroMega) and RaCe system (0.06 taper, FKG, Dentaire), Forty file of each instrument were used within two canals with angle of curvature (40 &60 )at two speed (250&400)RPM, twelve group were formed for all instruments(total number=120),ten file for each group. The testing canals customized within stainless steel block covered with glass face, the time to fracture recorded and the mean of cycles to fracture (MCF) detected for each instrument. Data were analyzed statistically by ANOVA, LSD and Independent T-test at 5% significant level. Result: there was a highly significant difference of curvature angle and significant difference of rotational speed on the fracture resistance of instruments. RaCe revealed the best fracture resistance followed by ProTaper then Revo-S that showed the less resistance. Conclusion: The rotary instruments more prone to fracture when used at more curvature angle and higher rotational speed, as well as the rotary instruments differ from each other according to manufacturing process, taper, cross section and other factors.
In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affe
... Show MoreContracting companies play a prominent role today in economic activity, due to their contribution to the implementation of major construction projects which together constitute the infrastructure of society. Most construction projects also suffer from exceeding the time and cost specified and planned for the completion of the project, and this comes for several reasons, including the work environment, country conditions, The method of managing project costs and the techniques used in its implementation Accordingly, the concepts of lean construction came, which help in addressing the causes of waste, both in time and cost, in addition to the fact that project management needs techniques that are useful in controlling the control and manag
... Show MoreDue to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreDam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (F
... Show MoreThermal conductivity of compacted bentonite is one of the most important properties where this type of clay is proposed for use as a buffer material. In this study, Lee's disc method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results have been analyzed to observe the three major factors affecting the thermal conductivity of bentonite buffer material. While the clay density reaches to a target value, the measurement is taken to evaluate the thermal conductivity. By repeating this procedure, a relationship between clay dry density and thermal conductivity has been established in specimens after adjusting the water contents of the bentonite by placing its specimens in a drying oven for diffe
... Show MoreThe current study included the anatomical structure of the metatarsal bone in sheep in terms of the traditional structural description of the bone, as it was found that the metatarsal bone in the fore and hind limbs of adult sheep had no visible differences between it and animals, especially ruminants. The metacarpal \tarsal bone No. 3 was cylindrical in shape, with the presence of the metacarpal \tarsal bones 2 and 4 declines, articulated from the proximal end with the metacarpal and metatarsal bones whereas from the distal part with the fetlock joint and the first phalanx bone. The aim of the study is to determine whether the environment and its changes in Iraq have affected the animals and their bones in terms of length, thicknes
... Show MoreIron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c

