Background: The fracture of instruments within root canal during endodontic treatment is a common incidence, fracture because of fatigue through flexure occurs due to metal fatigue, this study aimed to assess the effect of curvature angle and rotational speed on the cyclic fatigue of different type of Endodontic NiTi Rotary Instruments and compare among them. Materials and method: Three types of rotary instruments with tip size 0.25: ProTaPer F2 (Densply, Malifier) Revo-S SU( 0.06 taper, MicroMega) and RaCe system (0.06 taper, FKG, Dentaire), Forty file of each instrument were used within two canals with angle of curvature (40 &60 )at two speed (250&400)RPM, twelve group were formed for all instruments(total number=120),ten file for each group. The testing canals customized within stainless steel block covered with glass face, the time to fracture recorded and the mean of cycles to fracture (MCF) detected for each instrument. Data were analyzed statistically by ANOVA, LSD and Independent T-test at 5% significant level. Result: there was a highly significant difference of curvature angle and significant difference of rotational speed on the fracture resistance of instruments. RaCe revealed the best fracture resistance followed by ProTaper then Revo-S that showed the less resistance. Conclusion: The rotary instruments more prone to fracture when used at more curvature angle and higher rotational speed, as well as the rotary instruments differ from each other according to manufacturing process, taper, cross section and other factors.
Coupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
Air pollution refers to the release of pollutants into the air that are detrimental to human health and the planet as a whole.In this research, the air pollutants concentration measurements such as Total Suspended Particles(TSP), Carbon Monoxides(CO),Carbon Dioxide (CO2) and meteorological parameters including temperature (T), relative humidity (RH) and wind speed & direction were conducted in Baghdad city by several stations measuring numbered (22) stations located in different regions, and were classified into (industrial, commercial and residential) stations. Using Arc-GIS program ( spatial Analyses), different maps have been prepared for the distribution of different pollutant
The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
This search includes the preparation of Schiff base ligand (SB) from condensation primary amine with vanillin. The new ligand was diagnosed by spectroscopic methods as Mass, NMR, CHN and FTIR. Ligand complexes were mixed from new (SB) and Anthranillic acid (A) with five metal (II) chlorides. The preparation and diagnosis were conducted by FTIR, CHN, UV-visible, molar conductivity, atomic absorption and magnetic moment. The octahedral geometrical shape of the complexes was proposed. The ligands and their new complexes were screened with two different types of bacteria.
This study synthesized zeolite 4A, and hierarchical composite structure consisting of zeolite 4A- carbon were successfully prepared. Hydrothermal method was used to grow a layer of zeolite 4A over porous carbon surfaces to enhance mass transfer and increase surface area of zeolite. The products then were used to remove radioactive cesium137Cs from liquid wastewater. Iraqi dates leaves midribs (DM) were used as locally available agricultural waste to prepare low- cost porous carbon, using carbonization method in tubular furnace at 900C for two hours. Hierarchical porous structures including zeolite are prepared by mechanically activating the carbon surface via Ultrasonicating nanoparticles suspension of ground zeolite type 4A.F
... Show MoreThe 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreSurface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show More