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a Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkiye 
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A B S T R A C T   

In this study, 3′,3′,4′,4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy group substituted metal-free and metallo- 
phthalocyanines have been synthesized. The new compounds have been characterized by a combination of 
several spectroscopic techniques. Using 1,1-diphenyl-2-picrylhydrazine (DPPH), OH radical scavenging, and 
reducing power tests, the antioxidant properties of these phthalocyanines were assessed. CoPc showed the 
highest antioxidant activity for DPPH assay, ZnPc and MnPc exhibited the highest and smilar antioxidant activity 
at reducing power assay, ZnPc demonstrated the highest antioxidant activity at OH scavenging activity. By using 
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, cytotoxicity of phthalocya-
nines was evaluated, and iNOS mediated nitric oxide (NO) generation was carried out.   

1. Introduction 

Macrocyclic compounds, which are bioactive molecules, have been 
used as multifunctional building blocks to create bioactive compounds 
in medical fields. Due to their distinctive electrical and optical charac-
teristics, as well as their extraordinarily high thermal and chemical 
stability, phthalocyanines (Pcs) are one of the favored macrocyclic 
molecules [1–3]. They are extensively researched in many fields such as 
material science and medicine, including dyes and colorants [4,5], 
chemical sensors [6], liquid crystal materials [7], catalyst [8–10], 
photodynamic therapy [11,12], antioxidant [13] and antimicrobial [14] 
agents. The poor solubility of Pcs limits their use in these areas. By 
adding different functional groups to the Pc ring or different metal 
cations to the cavity of the ring, their solubility can be enhanced [15, 
16]. 

Antioxidants are natural or synthetic compounds that lessen or pre-
vent the negative effects of free radicals. Several illnesses, including 
cancer, diabetes, inflammatory damage, cardiovascular disease, and 
neurological disorders are brought on by free radicals, which are highly 
reactive oxygen species [17–19]. In the pharmaceutical and food 

sectors, antioxidants’ toxicological and biological characteristics, 
detection, development, and assessment are crucial. In this context, in-
terest in new Pc molecules with low toxicity and antioxidant activity has 
been increasing, and Pcs have come to the fore with these properties [20, 
21]. In addidion, Pcs have been found to be effective photosensitizers for 
the inactivation of microorganism for antimicrobial photodynamic 
therapy. The efficiency of the Pcs against Gram-positive bacteria has 
been demonstrated in earlier studies. Nevertheless, the impermeability 
of the bacteria’s outer membrane, which is composed of a coating of 
lipopolysaccharides, limits its efficacy against Gram-negative bacteria 
[22,23]. 

Recently, the combined effects of photodynamic therapy and anti-
cancer agents have been widely studied [24,25]. Pcs are promising 
second-generation photosensitizers for PDR, thanks to their favorable 
photophysical and photochemical properties. The suppression of 
macromolecular synthesis, the alteration of energy generation meta-
bolism, and a reduction in DNA synthesis are the causes of phthalocy-
anines’ mode of action [26]. 

To date, various fluorophenyl or fluoroalkyl groups substituted 
metallo Pcs (MPcs) have been synthesized and their properties have 
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been investigated [27–37]. The solubility of these compounds increases 
due to the high electronegative properties of the fluorine groups. This 
study aimed to design new antioxidant compounds. For this reason, we 
synthesized and characterized a novel phthalonitrile, namely 4-(3′,3′,4′, 
4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy) phthalonitrile, and its metal-free 
and MPc derivatives. Additionally, antioxidant, cytotoxic and NO pro-
duction properties of phthalocyanines were examined. 

2. Experimental 

2.1. Synthesis and characterization 

2.1.1. 4-(3′,3′,4′,4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy)phthalonitrile (1) 
A mixture 2.8 g of 3,3,4,4,5,5,6,6,6-nonafluoro-hexane-1-ol (10.6 

mmol) and 1.8 g of 4-nitrophthalonitrile (10.6 mmol) dissolved in 20 mL 
of dry dimethylformamide. Then, 2.6 g of anhydrous K2CO3 (19 mmol) 
was added to the mixture in portions. For 96 h, the reaction mixture was 
stirred at 65 ◦C in a nitrogen atmosphere. Then it was precipitated into 
400 mL of the ice-water mixture after being cooled to room temperature. 
The precipitate was then filtered, neutralized by water washing, and 
dried in a vacuum. The product was purified on silica gel-packed column 
chromatography by using DCM as the eluent. Yield: 2.03 g (49 %). Anal. 
calcd. for C14H7F9N2O: C 43.09, H 1.81, N 7.18 %, found: C 43.20, H 
1.80, N 7.15 %. FT-IR νmax (cm− 1): 3088 (Ar-CH), 2984-2924 (alkyl-CH), 
2237 (C ≡N), 1604, 1309, 1224 (C–O–C), 1130, 999, 847, 723. 1H NMR 
(500 MHz; CDCl3): δ (ppm) 7.75 (d, 1H, Ar–H), 7.31 (s, 1H, Ar–H), 7.23 
(d, 1H, Ar–H), 4.39 (t, 2H, OCH2), 2.71 (m, 2H, CH2), 13C NMR (126 
MHz; CDCl3): δ (ppm) 161.02 (Ar–C), 135.39 (Ar-CH), 119.61 (-CF2), 
119.22 (-CF2), 117.63 (-CF2), 115.44 (C ≡N), 115.04 (Ar–C), 108.21 
(-CF3), 61.20 (OCH2), 30.89 (CH2). 19F NMR (470 MHz, DMSO‑d6): δ 
(ppm) − 81.05 (3F–CF3), − 112.86 (2F–CF2), − 124.26 (2F–CF2), 
− 126.01 (2F CF2). MS (MALDI-TOF; matrix: CHCA): m/z 390.512 [M]+, 
602.837 [M + matrix + Na]+. 

2.1.2. 2,9/10,16/17,23/24-Tetrakis[(3′,3′,4′,4′,5′,5′,6′,6′,6′-nona-flouro- 
hexyloxy)] phthalocyanine (2) 

At 80 ◦C, 2.08 mg (0.30 mmol) of lithium metal was dissolved in n- 
pentanol (4 mL). This solution was heated to 145 ◦C for 5 h after 200 mg 
(0.51 mmol) of 4-(3′,3′,4′,4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy)phthalo-
nitrile (1) addition. The reaction mixture was then poured into 100 mL 
of water after being cooled to room temperature. This mixture was 
acidified with 1 mL of hydrochloric acid (HCl) to convert dilithium Pc to 
metal-free Pc derivative. The product was repeatedly washed with water 
and n-hexane before being purified on silica gel using column chroma-
tography with tetrahydrofuran as the eluent. Yield: 0.090 g (45 %). m.p. 
> 200 ◦C. Anal. calcd. for C56H30F36N8O4: C 43.04, H 1.93, N 7.17 %, 
found: C 43.18, H 1.92, N 7.19 %. FT-IR νmax (cm− 1): 3290 (NH), 3060 
(Ar-CH), 2959–2873 (alkyl CH), 1613, 1468, 1215 (C–O–C), 1095, 
1020, 745. 1H NMR (500 MHz; d6-acetone): δ (ppm) 7.87 (m, 4H, Ar–H), 
7.56 (m, 4H, Ar–H), 7.45 (m, 4H, Ar–H), 4.81 (m, 8H, OCH2), 3.17 (m, 
8H, OCH2), − 1.41 (br, 2H, NH). 13C NMR (126 MHz; DMSO‑d6): δ (ppm) 
178.21 (Ar–C), 169.76 (Ar–C), 166.49 (Ar–C), 158.81 (Ar–C), 142.69 
(Ar–C), 141.66 (Ar–C), 130.70 (Ar-CH), 125.13 (Ar-CH), 124.41 (Ar- 
CH), 122.72 (CF2), 115.99 (CF3), 110.08 (CF2), 56.54 (OCH2), 35.99 
(CH2). UV–Vis (THF) λmax, nm (Log ε): 340 (4.91), 671 (4.92), 703 
(4.96). MS (MALDI-TOF): m/z 1563.004 [M]+. 

2.1.3. 2,9/2,9/10,16/17,23/24-Tetrakis[(3′,3′,4′,4′,5′,5′,6′,6′,6′-nona- 
flouro-hexyloxy)] phthalocyaninato zinc(II) (3) 

100 mg (0.256 mmol) 4-(3′,3′,4′,4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy) 
phthalonitrile was dissolved in 2-dimethylaminoethanol (2 mL) and 
later 20 mg (0.109 mmol) anhydrous Zn(CH3COO)2 was added. The 
reaction mixture was heated to 145 ◦C and stirred for 24 h under a ni-
trogen atmosphere. The mixture precipitated in water after cooling to 
room temperature. The green precipitate was collected by vacuum 
filtration and washed with water and ethanol. The crude product was 

purified using silica gel-packed column chromatography using tetrahy-
drofuran as eluent. Yield: 0.035 g (34 %). m.p. > 200 ◦C. Anal. calcd. for 
C56H28F36N8O4Zn: C 41.36, H 1.74, N 6.89 %, found: C 41.22, H 1.74, N 
6.90 %. FT-IR νmax (cm− 1): 3060 (Ar-CH), 2964–2869 (alkyl CH), 1609, 
1473, 1215 (C–O–C), 1128, 1005, 878, 716. 1H NMR (500 MHz; 
DMSO‑d6): δ (ppm) 7.78 (d, 4H, Ar–H), 7.51 (s, 4H, Ar–H), 7.39 (d, 4H, 
Ar–H), 5.41 (m, 8H, OCH2), 3.14 (m, 8H, OCH2). 13C NMR (126 MHz; 
DMSO‑d6): δ (ppm) 172.83 (Ar–C), 163.07 (Ar–C), 155.10 (Ar–C), 
143.53 (Ar–C), 135.76 (Ar-CH), 132.24 (Ar–C), 125.33 (Ar-CH), 121.17 
(CF2), 118.50 (CF3), 109.03 (CF2), 56.75 (OCH2), 30.10 (CH2). 19F NMR 
(470 MHz, DMSO‑d6): δ (ppm) − 80.50 (12F, –CF3), − 112.44 (8F, –CF2), 
− 123.95 (8F, –CF2), − 125.62 (8F, CF2).UV–Vis (THF) λmax, nm (Log ε): 
348 (4.79), 675 (5.05). MS (MALDI-TOF): m/z 1626.995 [M]+, 
1649.543 [M+Na]+. 

2.1.4. 2,9/10,16/17,23/24-Tetrakis[4-(3′,3′,4′,4′,5′,5′,6′,6′,6′-nona- 
flouro-hexyloxy)] phthalocyaninato cobalt(II) (4) 

Compound 4 was synthesized similarly to 3 from 1 by using 15 mg 
(0.116 mmol) anhydrous CoCl2. Tetrahydrofuran was used as an eluent 
in column chromatography on silica gel to purify the product. Yield: 
0.031 g (30 %). m.p. > 200 ◦C. Anal. calcd. for C56H28F36N8O4Co: C 
41.53, H 1.74, N 6.92 %, found: C 41.65, H 1.73, N 6.93 %. FT-IR νmax 
(cm− 1): 3062 (Ar-CH), 2960–2869 (alkyl CH), 1611, 1472, 1400, 1346, 
1216 (C–O–C), 1127, 1005, 877, 716. UV–Vis (THF) λmax 

nm (Log ε): 330 (4.91), 662 (5.07). MS (MALDI-TOF): m/z 1619.026 
[M]+. 

2.1.5. 2,9/10,16/17,23/24-Tetrakis[4-(3′,3′,4′,4′,5′,5′,6′,6′,6′-nona- 
flouro-hexyloxy)] phthalocyaninato manganese(III)chloride (5) 

Compound 5 was synthesized similarly to 3 from 1 by using 14.6 mg 
(0.116 mmol) anhydrous MnCl2. The crude product was purified using 
silica gel-packed column chromatography using tetrahydrofuran as 
eluent. Yield: 0.035 g (33 %). m.p. > 200 ◦C. Anal. calcd. for 
C56H28ClF36MnN8O4: C 40.73, H 1.71, N 6.79 %, found: C 40.64, H 1.70, 
N 8.36 %. FT-IR νmax (cm− 1): 2972–2861 (alkyl CH), 1608, 1469, 1343, 
1216 (C–O–C), 1128, 1078, 877. 1H NMR (500 MHz; DMSO‑d6): δ (ppm) 
7.74 (d, 4H, Ar–H), 7.36 (s, 4H, Ar–H), 7.31 (d, 4H, Ar–H), 4.47 (m, 8H, 
OCH2), 2.96 (m, 8H, OCH2). 13C NMR (126 MHz; DMSO‑d6): δ (ppm) 
178.72 (Ar–C), 169.24 (Ar–C), 163.19 (Ar–C), 135.73 (Ar–C), 134.96 
(Ar-CH), 125.28 (Ar–C), 124.66 (Ar-CH), 120.91 (CF2), 118.55 (CF3), 
108.76 (CF2), 61.53 (OCH2), 30.86 (CH2). UV–Vis (THF) λmax, nm (Log 
ε): 387 (4.77), 498 (4.26), 719 (5.07). MS (MALDI-TOF): m/z 1651.531 
[M]+. 

2.1.6. Antioxidant activity 

2.1.6.1. DPPH radical scavenging activity. Each molecule (100–500 μg/ 
mL) was dissolved in dimethyl sulfoxide (DMSO) and 2 mL solution was 
mixed with 2 mL methanolic solution of 1,1-diphenyl-2-picrylhydrazine 
(DPPH) at 0.1 mM concentration. The radical scavenging ability of the 
tested compounds was observed by measuring the decrease in UV 
absorbance at 517 nm after 30 min of incubation in the dark [38]. The 
DPPH radical scavenging activity percentage was calculated by using 
the following formula: 

DPPH radical scavenging activity(%)=
A control − A sample

Acontrol
x100  

2.1.6.2. Reducing power assay. Using the method in previous study, the 
reducing power of synthesized Pcs and the standard antioxidants was 
evaluated [39]. The reduction power is an indicator of the antioxidant 
activity of a compound. Fe+2 ion concentration is measured at 700 nm 
after the reducers convert Fe+3 ions to Fe+2 ions. 

2.1.6.3. OH– scavenging assay. OH- scavenger activity of the synthe-
sized molecules was revealed by using a procedure described before 

B.S. Bilen et al.                                                                                                                                                                                                                                  
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[40]. OH radicals were produced using H2O2 and, then, the hydroxyl-
ation abilities of salicylate were investigated. The reaction mixture (3 
mL) consisted of different concentrations of Pc molecules, along with 1 
mL of FeSO4 (1.5 mM), 0.7 mL of H2O2 (6 mM), and 0.3 mL of sodium 
salicylate (20 mM). The hydroxylated salicylate complex’s absorbance 
was determined after 1 h of incubation at 37 ◦C. 

Scavenging rate= [1-(A1-A2) /A0]×100%  

where A0 was the absorbance of the control (without Pcs) while the 
absorbances A1 and A2 corresponded to the absorbance in the presence 
of the Pc molecules and the absorbance without sodium salicylate, 
respectively. 

2.1.6.4. Cytotoxicity assay. Pc samples were tested on cancerous cell 
lines (cervix adenocarcinoma cells (HeLa), human colon carcinoma 
(CaCo-2), human pancreatic carcinoma cells (PANC-1), prostatic 
adenocarcinoma (PC3), human breast adenocarcinoma cells (MDA-MB- 
231), lung carcinoma cells (A549), human breast adenocarcinoma 
(MCF-7), human glioblastoma cells (U87MG), mouse embryonic fibro-
blasts (3T3), human monocyte cells (THP-1), human lung carcinoma 
cells (HTB-177), human bronchioalveolar non-small cell carcinoma 
(CRL-5807), human squamous cell adenocarcinoma mesothelioma 
(CRL-5826), and murine macrophages cells (RAW 264.7)), and non- 
cancerous cell line (monkey kidney epithelial cells (VERO)) and 
healthy cell line (normal human lung fibroblasts (CCD34LU)). Cyto-
toxicity study was performed by using 3-(4,5-dimethyl-2-thiazolyl)-2,5- 
diphenyl-2H-tetrazolium bromide) (MTT) assay [41]. 

The cell lines were maintained in Dulbecco’s modified Eagle’s me-
dium F12 (DMEM/F12), supplemented with 10 % fetal bovine serum 
(FBS), 100 U/mL of penicillin, and 100 μg/mL of streptomycin (Gibco). 
The cells were incubated at 37 ◦C in a humidified atmosphere of 5 % 
CO2. The cells were subcultured twice a week, and cells in the expo-
nential growth phase were used in the experiments. For this purpose, all 
cell lines were cultivated for 24 h in 96-well microplates with an initial 
concentration of 1 × 105 cells/well in a humidified atmosphere with 5 % 

CO2, at 37 ◦C. Then, the cultured cells were treated with different con-
centrations of the compounds (0.5, 5, 50 μg/mL) followed by incubation 
for 48 h at 37 ◦C. The treatment concentration was given as μM for pure 
compounds. After incubation with samples, the percentages of viable 
cells in each culture were assessed, and IC50 values were computed 
using Graph Pad Prism 5 [42]. 

2.1.7. Nitric oxide analysis (iNOS) 
RAW 264.7 (mouse macrophages) were cultured in lipopolysaccha-

ride (LPS) and RPMI 1640 (Roswell Park Memorial Institute (RPMI) 
1640) medium with 10 % FBS (fetal bovine serum), 100 U/mL of 
penicillin, and 100 μg/mL of streptomycin (Gibco) at 37 ◦C in a hu-
midified atmosphere with 5 % CO2. Cells were seeded in 96-well plates 
(1 × 106 cells/mL) and incubated for 24 h for the experiment. Dilutions 
of the molecules (1, 10, and 100 g/mL) were added after inducing with 
LPS (5 g/mL), and cells were then incubated for a further 24 h at 37 ◦C in 
a humid atmosphere with 5 % CO2. The level of nitrite in the medium 
was measured using Griess reagent in supernatants. The absorbance was 
measured at 540 nm. In comparison to the vehicle control, the sample’s 
percentage inhibition of nitrite generation was calculated [21,43]. 

3. Results and discussion 

3.1. Synthesis and structural characterizations 

Fig. 1 depicts the synthesis process for the phthalonitrile derivative 
(1) and Pcs (2–5). The precursor dinitrile compound, namely 4- 
(3′,3′,4′,4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy) phthalonitrile (1), was pro-
duced in dry DMF in 49 % yield by base catalyzed nucleophilic substi-
tution reaction of 4-nitrophthalonitrile with 3,3,4,4,5,5,6,6,6- 
nonafluoro-hexane-1-ol. By combining compound 1 with a lithium 
alkoxide in this stage, cyclotetramerization was accomplished, resulting 
in the creation of the corresponding dilithium Pc (Li2Pc) [44]. Li2Pc was 
converted to metal-free Pc (2) by acidification with HCl. Cyclo-
tetramerization of compound 1 with anhydrous metal salts (Zn 

Fig. 1. Synthetic route for phthalonitrile derivative (1) and Pcs (2–5) (i: DMF, K2CO3, 65 ◦C; ii: Lithium metal, n-pentanol, 145 ◦C, HCl; iii: metal salts, 2-dimethy-
laminoethanol, 145 ◦C). 
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(CH3COOH)2, CoCl2, and MnCl2) in 2-dimethylaminoethanol at 145 ◦C 
under nitrogen atmosphere led to the formation of peripherally 
tetra-substituted MPcs (3–5) (Fig. 1). 

In this study, the solubility of 2–5 was increased, as the polarities of 
the solvents was also increased. All newly synthesized Pcs (2–5) 
exhibited good solubility in strongly polar solvents such as DMSO and 
DMF. Also, they could be dissolved easily in medium polar solvents such 
as ethyl acetate and THF, but the solubility in chloroform and 
dichloromethane was poor, this finding coinciding with that reported in 
the literature [30]. The type of central metal ions has an impact on the 
solubility of Pcs as well. In this study, compound 5 showed a lower 
solubility than those of 3 and 4 in polar solvents. The solubility of 
metal-free Pc was higher than its metal derivatives (3–5). 

All synthesized compounds in this study were characterized using 
several spectroscopic methods. 

Stretching vibrations for aromatic CH, aliphatic CH, C ≡N, and 
C–O–C appeared at 3088, 2984-2924, 2237, and 1224 cm− 1 in the FT-IR 
spectra of compound 1 (Fig. S16). The aromatic protons showed up as a 
doublet, singlet, and doublet, respectively, at 7.75, 7.31, and 7.23 ppm 
in the 1H NMR spectra of 1 in CDCl3. The CH2 protons were seen as 
triplets and multiplets, respectively, at 4.39 (OCH2) and 2.71 (CH2) ppm 
(Fig. S1). The aromatic carbons atoms appeared at showed at 161.02, 
135.39, 119.22, and 117.63 ppm in the 13C NMR spectrum of compound 
1 in CDCl3. The nitrile carbons were observed at 115.44 and 115.04 
ppm. The aliphatic CF2, CF3 and CH2, carbons appeared at 119.61, 
119.22, 108.21, 117.63, 61.20, and 30.89 ppm, respectively (Fig. S2). 
The absence of strong C ≡N vibration at 2237 cm− 1 in the FT-IR spectra 
of the Pc derivatives (2–5) indicated that compound 1 completed the 
cyclotetramerization reaction (Figs. S17–20). 

Stretching vibrations of C–O–C, aliphatic CH, and aromatic CH were 
detected at 1215–1216, 2972-2861, and 3060-3062 cm− 1, respectively. 
An additional absorption band at 3290 cm− 1 that was attributed to the 
NH stretching vibrations was visible in the FT-IR spectrum of metal-free 
Pc (2). 

MS MALDI TOF measurements for compounds 1–5 were performed 
in THF medium The existence of molecular peaks at m/z 390.512 [M]+, 
[M + matrix + Na]+.for 1, 1563.004 [M]+.for 2, m/z 1626.995 [M]+, 
1649.543 [M+Na]+ for 3, m/z 1619.026 [M]+ for 4, and m/z 1651.531 
[M]+ for 5 in the mass spectra of compounds 1–5 confirmed the pro-
posed structures (Figs. S11–S15). 

Due to the mixed structural isomers of Pcs 2, 3 and 5 and the ag-
gregation of Pcs at the concentrations utilized for NMR spectroscopy, 
wide peaks were seen in the 1H NMR spectra of these compounds in 
CDCl3 [27]. The aromatic, CH2, and OCH2 protons appeared at 
7.45–7.87, 4.81, and 3.17 ppm, respectively, in the 1H NMR spectrum of 
2 in d6-acetone. The inner NH protons of 2 were also recognized by a 
broad chemical shift at − 1.41 ppm structures (Fig. S4). In the 1H NMR 
spectra of compounds 3 and 5 in DMSO‑d6, the aromatic, CH2, and OCH2 

protons appeared at 7.78–739, 5.41, and 3.14 ppm for 3 and 7.74–7.31, 
4.47, and 2.96 ppm for 5, respectively (Figs. S6 and S9). The para-
magnetic property of CoPc prevented the detection of 4 by 1H NMR [44]. 
In the 13C NMR spectra of compounds 2, 3, and 5 in DMSO‑d6 the aro-
matic carbons appeared at 178.21–124.41 ppm for 2, 172.83–125.33 
ppm for 3, and 178.72–124.66 ppm for 5, respectively. In the 19F NMR 
spectra of compounds 1 and 3 in DMSO‑d6 the CF3 and CF2 fluorine 
atoms appeared at − 81.05 − 112.86,− 124.26, and − 126.01 ppm for 1 
and -80.50 − 112.44− 123.95, and − 125.62 ppm for 3, respectively (S3 
and S8). 

3.1.1. Ground state electronic absorption 
Fig. 2 displays the electronic absorption spectra of Pc complexes 

(2–5) in THF. Intense single Q-band absorptions of π→π* transitions are 
present in the UV–vis absorption spectra of all MPcs (3–5) at wave-
lengths of 675, 662, and 719 nm, respectively. 

Due to the D2h symmetry, the metal-free derivative 2 produced a 
doublet Q band at 671 and 703 nm. The B bands of compounds 2–5 were 
observed at 340, 348, 330, and 387 nm, respectively. The Q-band ab-
sorptions of MPcs (3–5) increased in the following order: CoPc (4) <
ZnPc (3) < MnPc (5). The Q-band of MnPc (5) was shifted by 44 and 57 
nm compared to the Q-band of the CoPc (4) and ZnPc (3). Depending on 
the type of core metal ion, the UV–vis absorption spectra of Pcs 3–5 
exhibit different behavior. Additionally, charge transfer absorption (Pc- 
metal, LMCT) was linked to the peak for MnPc (5) at 498 nm [28,45]. 

3.1.2. Antioxidant activity 
The DPPH method was used to assess the antioxidant capacities of 

four different Pcs within the context of the investigation. Considering 
the metal effect they contain, the antioxidant effects of metallo- 
phthalocyanines were higher than those without metal (Fig. 3). 
Among the Pcs studied, CoPc (4) had the highest DPPH radical scav-
enging activity. These compounds’ π systems, which consist of an elec-
tron density cloud above and below the internuclear axis, correspond to 
bonds in which atomic orbitals overlap in parallel [46]. The antioxidant 
functions of Pcs are closely related to the resonance in the π system [1, 
47]. The list of the DPPH radical scavenging activities of Pc molecules in 
decreasing order is; CoPc > ZnPc > MnPc > H2Pc. The mechanism of 
action of the MPcs is deeply related to the resonance that occurs in the π 
system located in these structures [1,48]. The π systems in these com-
pounds correspond to bonds in which atomic orbitals overlap in parallel, 
comprising an electron density cloud above and below the internuclear 
axis, for example, as in the 2p orbital of nitrogen and d orbital of metal, 
called a pp–dp bond [49]. Pcs which have conjugated systems, readily 

Fig. 2. UV–Vis absorption spectra of 3–5 in THF (1 × 10− 5 M).  Fig. 3. Antioxidant activities of Pc molecules at different concentrations by 
using DPPH method (The absorbance values were converted to scavenging ef-
fects (%) and the data plotted as the means of replicate scavenging effect (%) 
values ± 1 S.D. (n = 3) against Pc concentration in μg molecule per mL reac-
tion volume). 

B.S. Bilen et al.                                                                                                                                                                                                                                  



Dyes and Pigments 221 (2024) 111814

5

accept or donate electrons. Pcs containing a transition metal ion easily 
change their oxidation state by an electron exchange. According to 
literature, an oxidation number of transition metal atoms that is derived 
from a known dn configuration should be specified as a physical (or 
spectroscopic) oxidation number (state) [50]. 

In a study dealing with the radical scavenging ability of newly syn-
thesized Pc derivatives, CoPc demonstrated the strongest antioxidant 
activity at 50 mg/mL concentration when compared to the ZnPc [51]. In 
another study investigating the antioxidant properties of the metal-free, 
zinc, and cobalt Pcs carrying 4-methoxy-phenoxy substituents on the 
non-peripheral or peripheral positions, non-peripherally substituted 
CoPc showed the best antioxidant activity [52]. 

BHT showed the highest reducing activity at all tested concentrations 
when reducing power activities of Pcs were evaluated (Fig. 4). Among 
the tested molecules, ZnPc showed the strongest reducing power activity 
followed by MnPc > H2Pc > CoPc. 

It is seen that the metal ions in the central cavity of the synthesized Pc 
molecules and the substituents attached to the main skeleton of the 
molecules are effective on the antioxidant activity properties of metallo 
and metal-free Pc molecules. An evaluation of previous studies is given 
in Table 1. 

The discovery of new antioxidant molecules in OH radical removal is 
important because OH radicals interact with many molecules such as 
sugar, amino acids, and lipids in living cells. The Fenton reaction, which 
uses a transition metal as a pro-oxidant in the catalytic breakdown of 
superoxide and hydrogen peroxide, is by far the most significant 
mechanism for OH production in living things [56]. According to the 
study performed by using synthesized molecules and positive control, 
ascorbic acid showed the highest radical scavenging activity against OH 
radical at all tested concentrations followed by ZnPc > MnPc > H2Pc >
CoPc (Fig. 5). 

The antioxidant behavior of Pcs is directly related to the resonance of 
localized electrons. Two factors that immediately affect the π electron 

density are the centrally located metal atom and connected substituent 
[57]. The d-electron configuration dn is a central-atom descriptor in 
transition-metal complexes. For a transition metal of N valence elec-
trons, dn yields oxidation state as [58]; 

OS=N – n 

Oxidation state is related to ligand and ligands are classified as 
"innocent" and "suspected" based on their probability of describing the 
oxidation state of the metal atom in the complexes [59]. 

3.1.3. Cytotoxic activity 
Cytotoxicity activity: The cytotoxicity of Pcs was evaluated using the 

MTT assay. There were no toxic effects on cells in the H2Pc and CoPc 

Fig. 4. Reducing power activities of the Pc molecules (The absorbance values 
were converted to scavenging effects (%) and the data plotted as the means of 
replicating scavenging effect (%) values ± 1 S.D. (n = 3) against Pc concen-
tration in μg molecule per mL reaction volume). 

Table 1 
Antioxidant activities of Pc molecules from literature.  

Substituent Central metal atom Highest activity  Concentration Reference 

(3,4,5-Trimethoxybenzyloxy) Zn/Co/Ni DPPH CoPc 100 mg/mL [38] 
Chelating Effect ZnPc 

2,6-di-tertbuthylphenol Co/Cu/Zn/Mn DPPH CoPc 60 mg/mL [53] 
4-((4′-tert-butyl)phenoxy)phenoxy Zn/Co/H2 DPPH H2Pc 500 μg/mL [54] 

Superoxide scvng. CoPc 
Hydroxyl Scvng. H2Pc 

2-methoxy-4-{(Z)-[(4-morpholin-4-ylphenyl)imino]methyl}phenol Zn/Cu/Co DPPH CuPc 50 mg/mL [55] 
Ferric Reducing CoPc  

Fig. 5. OH radical scavenging activities of Pc molecules and positive control 
(The absorbance values were converted to scavenging effects (%) and the data 
plotted as the means of replicate scavenging effect (%) values ± 1 S.D. (n = 3) 
against Pc concentration in μg molecule per mL reaction volume). 

Table 2 
IC50 values of cytotoxic activities of cells.  

Cells IC50 (μg/mL) 

H2Pc CoPc MnPc ZnPc Dox 

HeLa – – 0.021 0.024 0.001 
3T3 – – – – 0.008 
A549 – – >0.03 0.026 0.009 
CaCo-2 – – – – >0.037 
PANCI – – – – 0.030 
MCF-7 – – 0.026 0.017 0.003 
RAW 264.7 – – >0.03 >0.031 0.003 
Vero – – – – 0.005 
THP-1 – – >0.03 0.020 0.008 
U87MG – – – – 0.004 
MDA-MB-231 – – >0.03 – 0.021 
PC3 – – – – 0.002 
CCD34LU – – >0.03 >0.031 0.009 
HTB-177 – – – – 0.001 
CRL-5807 – – – – 0.009 
CRL-5826 – – 0.028 0.022 0.002  
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samples (Table 2). The IC50 value in the MnPc sample was determined to 
be 0.021 μM in HeLa, 0.028 μM in CRL-5826, and 0.026 μM in MCF-7 
cells, respectively. Furthermore, for the ZnPc sample, the IC50 values 
were calculated to be HeLa 0.024 μM, A549 0.026 μM, THP-1 0.020 μM, 
CRL-5826 0.022 μM and MCF-7 0.017 μM. Cytotoxic effects on non- 
cancerous CCD34LU and 3T3 cells were not determined at the dose 
employed. When the literature was examined, it was determined that the 
metal salts used in the synthesis of Pc molecules showed cytotoxic ac-
tivity [60–62]. For example; in a study examining the cytotoxic activity 
of MnCl2, its IC50 value on HeLa and MCF-7 cells was determined to be 
> 100 μmol/L (12.58 μg/mL) [63]. Although metal complexes exhibit 
cytotoxic activity, this activity decreases in Pc molecules [64,65]. The 
percent viability graphs of all cells are given in the electronic supple-
mentary material (ESI) (Fig. S21 (A-R)). 

Pc shows properties that provide high peroxidase-like catalytic ac-
tivity, form free radicals, and inhibit the proliferation of cancer cells. 
When the literature was examined, it was stated that Pcs showed cyto-
toxic and high phototoxic effects on cancer cells [66]. MnPc and ZnPc, 
which were investigated as part of the study, showed minimal cytotox-
icity on immune system cell lines and healthy cell lines but increased 
cytotoxicity on cancer cell lines. The results of this study support those 
of prior studies [67–70]. However, it is also crucial to investigate these 
compounds’ phototoxicities to evaluate their potential as anticancer 
agents. 

3.1.4. Nitric oxide analysis 
The inhibitory effects of Pcs on NO expression were investigated. 

However, none of the samples showed any significant NO inhibition 
(Fig. 6). 

Numerous biological functions, including cell signal transmission 
and cell cycle, depend on reactive oxygen species, which include 
hydrogen peroxide, nitric oxide, superoxide, hydroxyl radicals, and 
hydroxyl ions. Depending on the degree and length of exposure, these 
reactive molecules can cause DNA damage, oxidative stress, and cellular 
damage, inducing either cell survival or death pathways [71]. It is 
widely known that iNOS-mediated NO production suppression, which is 
efficient in many pathophysiological situations, can contribute to 
anti-inflammatory and immunoregulatory activities [72]. It was found 
that ZnPc had a stronger NO inhibition than other Pc molecules. 

4. Conclusion 

In conclusion, we have successfully synthesized and characterized 
peripherally 3′,3′,4′,4′,5′,5′,6′,6′,6′-nonafluoro-hexyloxy groups 
substituted phthalocyanines. In addition, we have addressed the 
possible use of these complexes in biological applications according to 
their antioxidant and cytotoxic activities. Pc molecules synthesized in 

this study did not exhibit significant NO inhibition. No toxic effects on 
cells were seen in the H2Pc and CoPc samples. There were no known 
cytotoxic effects at the dosage employed on either the cancer-free 3T3 
cell line or the healthy CCD34LU cell line. All molecules showed mod-
arete antioxidant activity all tested assays. 

CRediT authorship contribution statement 
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functionalized porphyrin for electrochemical carbon dioxide reduction. 
J Electrochem Soc 2021;168(12):126512. 
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