Background: The purpose of this study was to evaluate and compare centering ability and canal transportation of simulated S-shaped canals instrumented with four different types of rotary nickel-titanium systems. Materials and Methods: Forty simulated S-shaped canals in resin blocks were divided into four groups of ten each and were instrumented to an apical size 25 by different instrumentation technique using ProTaper Universal files (group A), ProTaperNext (group B), Reciproc (group C) and WaveOne (group D).Centering ability and canal transportation was measured at (11) measuring points from D0 to D10 bysuperimposion of the pre- and post-operative images obtained by using digital camera in standardized manner. An assessment of the canals shape was determined using Photoshop CS2 and AutoCAD software. The data were analyzed statistically using ANOVA and LSD test. Results: In terms of centering ratio values, there was no statistically significant difference among the four groups at the coronal portion of the canals, with ProTaper system showing the least centering ability at all levels except at apical foramen. At the apical curvature, the Reciproc and WaveOne groups showed better centering ability than ProTaperNext and the difference was statistically highly significant among them at these points, while at the coronal curvature the ProTaperNext showed better centering ability than Reciproc and WaveOne. Canal transportation was seen in all groups but the ProTaper systems showed more transportation values at almost levels when compared with the other groups with the least values by ProTaperNext at the coronal curvature and the least values by Reciproc and WaveOne at the apical curvature. Conclusions: Under the conditions of this study, ProtaperNext ,WaveOne and Reciproc instruments maintained the original curvature significantly better than ProTaperUniversal at almost levels. ProtaperNext showed a better shaping ability than Reciproc and WaveOne at the coronal curved section while at apical curved section Reciproc and WaveOne showed a better shaping ability than ProtaperNext. Key words: centering ability, canal transportation, ProTaperNext, Reciproc, WaveOne.
The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
Numerical simulation of charge density produced in plasma actuators is dependent upon the development of models dealing with electrical properties. The main aim of this work is to investigate the characteristics surface charge density and space charge density of DBD plasma actuator. A simple design of surface dielectric barrier discharge plasma actuator is used in the study. The discharge gas was N2:H2 mixture with applied voltage equal to 1.5 kV. A theoretical plasma model is used to establish the charge density details. Results show that surface charge density increased in value and spread in width alone the exposed electrode as the voltage increased and reached to the amplitude value.
The main objective of this study is to introduce a systematic design procedure for short-span segmental beams following a sophisticated ACI 440.2R-17 design procedure. The general aspects of innovative short-span segmental beams are easy to fabricate, economical and rapidly placed in pre-specified positions. Short-span segmental beams fabricated from individual precast plain-concrete blocks and CFRP plates. Recently, experimental tests performed on short-span segmental beams, by the authors, investigated CFRP plate-bonding, CFRP plate cross-sectional area, the thickness of plate-bonding epoxy resin, surface-to-surface condition of concrete blocks, as well as, interface condition of the bonding surface. The experimental program comprises tes
... Show MoreIn this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16, 15, and 20) mg sulfu
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show More