In this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
In this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.
The current study aimed the syntheses and characterizations of Gold nanoparticles (Au NPs) using a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the
... Show Morea laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that syn
... Show MorePorous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
This work presents the study of the dark current density and the capacitance for porous silicon prepared by photo-electrochemical etching for n-type silicon with laser power density of 10mw/cm2 and wavelength (650nm) under different anodization time (30,40,50,60) minute. The results obtained from this study shows different chara that different characteristic of porous diffecteristics for the different porous Silicon layers.
The result of a developed mathematical model for predicting the design
parameters of the fiber Raman amplifier (FRA) are demonstrated. The amplification
parameters are tested at different pump power with different fiber length. Recently,
the FRA employed in optical communication system to increase the repeater distance
as will as the capacity of the communication systems. The output results show, that
high Raman gain can be achieved by high pumping power, long effective area that
need to be small for high Raman gain. High-stimulated Raman gain coefficient is
recommended for high Raman amplifier gain, the low attenuation of the pump and the
transmitted signal in the fiber lead to high Raman gain.
In this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
Abstract : Silicone elastomer is widely used as the material of choice for fabricating maxillofacial prosthesis. However, silicone properties are far from ideal; low tear strength, low tensile strength and insufficient elasticity are the most undesirable properties. The purpose of this study was to evaluate the effect of addition of nano SiO2filler on tear strength, tensile strength, elongation at break, hardness and color of Cosmesil M-511 HTV maxillofacial silicone elastomer. Nano SiO2was added to the silicone base in concentrations of 4%, 5% and 6% by weight. Silicone with 0% nano filler served as a control. Tear test was done according to ISO 34-1. Tensile and elongation test was done according to ISO 37. Shore A hardness test was done
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi