Mastitis is an udder tissue inflammation which has infected various species of animals. It happens through several types of pathogenic bacteria, particularly Streptococcus agalactiae. GBS is a leading cause of cow mastitis. In our sample, 9.52% of Streptococcus agalactiae were isolated which were collected from bovine mastic milk and identified by biochemical tests such as catalase, oxidase, Production of indole, fermentation of sugar, an examination of antibiotic sensitivity, CAMP test and group kits of Lancefield. The results showed that all Streptococcus agalactiae isolate was diagnosed by CAMP test by the appearance of the arrowhead in blood agar and by the appearance of visible agglutination on a card in the serological grouping kit of Lancefield.
The combination of carbon nanotubes (CNT) and conducting polymers offers an attractive route for the production of novel compounds that can be used in a variety of applications such as sensors, actuators, and molecular scale electronic devices. In this work, functionalized multiwall carbon nanotubes (f-MWCNTs) were added in different load ratios (3 wt%, 5 wt% and 10 wt%) to thiophen (PTh) polymer to procedure PTh/CNTs nanocomposite and deposited on porous silicon substrate by electropolarization. Photoconductive detectors were fabricated using PTh/f-MWCNTs matrix to work in the near region and middle IR regions. These detectors were illuminated by semiconductor laser diode wavelength of 808(nm) and Nd-YAG laser of wavelength 1064 (n
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreBiosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were syn
... Show MoreThere has been an increase in demand for nanocomposite, which has resulted in large-scale manufacturers employing high-energy processes and harmful solvents. Because of this, the need for environmentally benign "green" synthesis processes has grown. Other methods for making nanocomposite include using plants and plant products, bacteria, fungi, yeast, and algae. Green synthesis has minimal toxicity and is safe for human health and the environment compared to other processes, making it the ideal option for creating nanocomposite materials. This work reveals an environmentally friendly synthesis method for magnetic nanocomposites. In particular, they were using an aqueous extract of Artemisia to obtain ZnO/Fe3O4
... Show MoreContext and its influence in direction of reference by Abi Hussein Al Basri
BaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show MoreThis paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
In this study, the effect of grafting with magnesium (Mg) ratios (0.1, 0.3, 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared membranes was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared membranes is polycrystalline, and (AFM) images also showed that the increased deformation with magnesium led to an increase in the grain size ratio and a decrease in surface roughness, as well as the absorption coefficient was calculated. And the optical energy gap for the prepared membranes, where it was found that the absorption coef
... Show MoreIn this work, nanostructure porous silicon surface was prepared using electrochemical etching method under different current densities. I have studied the surface morphology and photoluminescence (PL) of three samples prepared at current densities 20, 30 and 40 mA/cm2 at fixed etching time 10 min. The atomic force microscopy (AFM) images of porous silicon showed that the nanocrystalline silicon pillars and voids over the entire surface has irregular and randomly distributed. Photoluminescence study showed that the emission peaks centered at approximately (600 – 612nm) corresponding energies (2.06 – 2.02eV).
While current-voltage characteristics shows, as the current density increase the current flow in the forward bias is decreasi