In this study, experimental mortar combinations with 1% micro steel fibers, were examined to create geopolymer mortars. To test the effect of the fibers on the mortar's resistance, the geopolymer mortar was designed with various proportions of more environmentally friendly materials fly ash and slag. The percentage of fly ash by weight was 50, 60, and 70% of the slag. The best results were obtained when a 50:50 ratio of fly ash and slag were mixed with 1% micro steel fibers. The results showed that the mixtures containing fibers performed better in the considered tests (toughness index, ductility index, and resilience index). In the impact resistance test, the mixture contained 50% fly ash by weight of the slag with a temperature of 240°C and a curing period of 28 days, with and without micro steel fibers. Water absorption test results and void content increased when adding micro steel fibers after 7 and 28 days of curing at 24°C.
Background: The polymethyl methacrylate is the most reliable material for the construction of complete and partial dentures, despite satisfying esthetic demand itsuffered from having unsatisfactory properties like impact strength and transverse strength. This study was designed to improve the impact strength and transverse strength of heat cure acrylic resin by adding untreated and oxygen plasma treated polypropylene fibers and investigate the effect of this additive on some properties of acrylic resin materials. Materials and methods: Untreated and oxygen plasma treated polypropylene fibers was added to PMMA powder by weight 2.5 %. Specimens were constructed and divided into 5 groups according to the using tests; each group was subdivided
... Show MoreThe electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreIn this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreNiO nanoparticle synthesis by chemical method and characterized by XRD with crystal size 11.72
nm and grain size 13 nm from FESEM image also NiO micro used ,two NiO as an additive to evaluate the
possibility of producing photodegradable polymers, the practical application of solid-phase photocatalytic
degradation of polyvinyl chloride (PVC- NiO composite films) was investigated. PVC has a negative impact
on the environment since its polymer degrades slowly, yet it has a wide range of industrial applications and
the amount used shows no evidence of diminishing use. Thus, a synthesis of modified PVC- NiO micro and
nano has been studied with 0, 50, 100, 150, 200, 250, and 300 (hours) as irradiation time a
Concrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH
In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MorePhoenix dactylifera l. pinnae (the green leaves of dates palm) were used as natural reinforcing (strengthening) fibers to improve the mechanical properties of polyester as a matrix material, the fibers of the green leaves of dates palm were used in two lengths, 10 and 20mm with five rates of 0, 2.5, 5, 10, and 20% , where the reinforcing with the leaves fibers increases the hardness strength from 76.5 to be about 86.55 , the Impact value raised from about 0.313 to 0.461 , in addition to that the flexural strength from 2.66 to be about 55 , and the thermal conductivity increases from 2.54 𝑤∕𝑚.℃ to 5.41 𝑤∕𝑚.℃. The results of the present search explains that the composite samples reinforced at rate 20% and 10mm fiber length
... Show MoreBackground: Studying and investigating the transverse strength(Ts), impact strength(Is), hardness (Hr) and surface roughness(Ra) of conventional and modified autopolymerizing acrylic resin with different weight percentages of biopolymer kraftlignin, after curing in different water temperatures; 40°C and 80°C. Material and Methods: Standard acrylic specimens were fabricated according to ADA specification No.12 for transverse strength, ISO 179 was used for impact testing, Shore D for hardness and profilometerfor surface roughness. The material lignin first dispersed in the monomer, then the powder PMMA is immediately added. Ligninadded in different weight percentages. Then cured using pressure pot (Ivomet) in two temperatures;40°C a
... Show MoreThe research aims to investigate the effects of GMAW or MIG welding process on the mechanical properties of dissimilar aluminum alloys 2024-T351 and AA 6061- T651. A series of experimental techniques have been conducted to evaluate mechanical properties of the alloys, by carrying out hardness, tensile and bending tests for welded and un-welded specimens.
Metal inert gas (MIG) has been carried out on sheet metal using ER- 4043(AlSi5) as a filler metal and argon as shielded gas. The welded joints were tested by X-ray radiography and Faulty pieces were excluded.
Welding joints without defects are subjected to heat treatment including heating the joints in furnace to 170 °C for half an hour then air cooling to rel
... Show More