Preferred Language
Articles
/
jBf2UZEBVTCNdQwCM5QK
A Hybrid Meta-Heuristic Approach for Test Case Prioritization and Optimization
...Show More Authors

The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the capabilities of considering the imperatives such as code coverage, fault finding rate and execution time from search algorithms in our hybrid approach to refine test cases considerations repetitively. The strategy accomplished this by putting experiments on a large-scale project of industrial software developed. The hybrid meta-heuristic technique ends up being better than the routine techniques. It helps in higher code coverage, which, in turn, enables to detect crucial defects at an early stage and also to allocate the testing resources in a better way. In particular, the best APFD value was 0.9321, which was achieved in 6 generations with 4.879 seconds the value to which the computer was run. Besides these, , the approach resulted in the mean value of APFD as 0.9247 and 0.9302 seconds which took from 10.509 seconds to 30.372 seconds. The carried out experiment proves the feasibility of this approach in implementing complex systems and consistently detecting the changes, enabling it to adapt to rapidly changing systems. In the end, this research provides us with a new hybrid meta-heuristic way of test case prioritization and optimization, which, in turn, helps to tackle the obstacles caused by large-scale test cases and constantly changing systems.

Scopus Crossref
View Publication
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Biomathematics
A non-conventional hybrid numerical approach with multi-dimensional random sampling for cocaine abuse in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jul 05 2017
Journal Name
Neural Computing And Applications
Hybrid soft computing approach for determining water quality indicator: Euphrates River
...Show More Authors

View Publication
Scopus (34)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Electron lens Optimization for Beam Physics Research using the Integrated Optics Test Accelerator
...Show More Authors

This study proposed control system that has been presented to control the electron lens resistance in order to obtain a stabilized electron lens power. This study will layout the fundamental challenges, hypothetical plan arrangements and development condition for the Integrable Optics Test Accelerator (IOTA) in progress at Fermilab. Thus, an effective automatic gain  control (AGC) unit has been introduced which prevents fluctuations in the internal resistance of the electronic lens caused by environmental influences to affect the system's current and power values ​​and keep them in stable amounts. Utilizing this unit has obtained level balanced out system un impacted with electronic lens surrounding natural varieties.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Computer Methods And Programs In Biomedicine
A hybrid approach based on multiple Eigenvalues selection (MES) for the automated grading of a brain tumor using MRI
...Show More Authors

View Publication
Scopus (35)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Innovations in t-way test creation based on a hybrid hill climbing-greedy algorithm
...Show More Authors

<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Tue May 28 2019
Journal Name
Al-khwarizmi Engineering Journal
Heuristic D* Algorithm Based on Particle Swarm Optimization for Path Planning of Two-Link Robot Arm in Dynamic Environment
...Show More Authors

 Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved.  In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Environmental Nanotechnology Monitoring & Management
Green approach for the synthesis of graphene glass hybrid as a reactive barrier for remediation of groundwater contaminated with lead and tetracycline
...Show More Authors

Scopus (14)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression Testing
...Show More Authors

 

Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
...Show More Authors

The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref