The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the capabilities of considering the imperatives such as code coverage, fault finding rate and execution time from search algorithms in our hybrid approach to refine test cases considerations repetitively. The strategy accomplished this by putting experiments on a large-scale project of industrial software developed. The hybrid meta-heuristic technique ends up being better than the routine techniques. It helps in higher code coverage, which, in turn, enables to detect crucial defects at an early stage and also to allocate the testing resources in a better way. In particular, the best APFD value was 0.9321, which was achieved in 6 generations with 4.879 seconds the value to which the computer was run. Besides these, , the approach resulted in the mean value of APFD as 0.9247 and 0.9302 seconds which took from 10.509 seconds to 30.372 seconds. The carried out experiment proves the feasibility of this approach in implementing complex systems and consistently detecting the changes, enabling it to adapt to rapidly changing systems. In the end, this research provides us with a new hybrid meta-heuristic way of test case prioritization and optimization, which, in turn, helps to tackle the obstacles caused by large-scale test cases and constantly changing systems.
This paper proposes a new strategy to enhance the performance and accuracy of the Spiral dynamic algorithm (SDA) for use in solving real-world problems by hybridizing the SDA with the Bacterial Foraging optimization algorithm (BFA). The dynamic step size of SDA makes it a useful exploitation approach. However, it has limited exploration throughout the diversification phase, which results in getting trapped at local optima. The optimal initialization position for the SDA algorithm has been determined with the help of the chemotactic strategy of the BFA optimization algorithm, which has been utilized to improve the exploration approach of the SDA. The proposed Hybrid Adaptive Spiral Dynamic Bacterial Foraging (HASDBF)
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023