The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the capabilities of considering the imperatives such as code coverage, fault finding rate and execution time from search algorithms in our hybrid approach to refine test cases considerations repetitively. The strategy accomplished this by putting experiments on a large-scale project of industrial software developed. The hybrid meta-heuristic technique ends up being better than the routine techniques. It helps in higher code coverage, which, in turn, enables to detect crucial defects at an early stage and also to allocate the testing resources in a better way. In particular, the best APFD value was 0.9321, which was achieved in 6 generations with 4.879 seconds the value to which the computer was run. Besides these, , the approach resulted in the mean value of APFD as 0.9247 and 0.9302 seconds which took from 10.509 seconds to 30.372 seconds. The carried out experiment proves the feasibility of this approach in implementing complex systems and consistently detecting the changes, enabling it to adapt to rapidly changing systems. In the end, this research provides us with a new hybrid meta-heuristic way of test case prioritization and optimization, which, in turn, helps to tackle the obstacles caused by large-scale test cases and constantly changing systems.
Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine
... Show MoreThe concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s
... Show MoreThe performance of a synergistic combination of electrocoagulation (EC) and electro-oxidation (EO) for oilfield wastewater treatment has been studied. The effect of operative variables such as current density, pH, and electrolyte concentration on the reduction of chemical oxygen demand (COD) was studied and optimized based on Response Surface Methodology (RSM). The results showed that the current density had the highest impact on the COD removal with a contribution of 64.07% while pH, NaCl addition and other interactions affects account for only 34.67%. The optimized operating parameters were a current density of 26.77 mA/cm2 and a pH of 7.6 with no addition of NaCl which results in a COD removal efficiency of 93.43% and a specific energy c
... Show MoreNeurolinguistics is a new science, which studies the close relationship between language and neuroscience, and this new interdisciplinary field confirms the functional integration between language and the nervous system, that is, the movement of linguistic information in the brain in receiving, acquiring and producing to achieve linguistic communication; Because language is in fact a mental process that takes place only through the nervous system, and this research shows the benefit of each of these two fields to the other, and this science includes important topics, including: language acquisition, the linguistic abilities of the two hemispheres of the brain, the linguistic responsibility of the brain centers, and the time limit for langua
... Show MoreOpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad
... Show MoreThe current research aims to recognize the exploratory and confirmatory factorial structure of the test-wiseness scale on a sample of Hama University students, using the descriptive method. Thus, the sample consists of (472) male and female students from the faculties of the University of Hama. Besides, Abu Hashem’s 50 item test-wiseness scale (2008) has been used. The validity and reliability of the items of the scale have also been verified, and six items have been deleted accordingly. The results of the exploratory factor analysis of the first degree have shown the presence of the following five acceptable factors: (exam preparation, test time management, question paper handling, answer sheet handling, and revision). Moreover,
... Show MoreIn this review of literature, the light will be concentrated on the role of stem cells as an approach in periodontal regeneration.