<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreIndividuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect
... Show MoreThe aim of this research to study.
The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :
The first to the research methodology, the second to the theoretical review o
... Show MoreThe objective of the research is to identify the effect of the five-finger strategy on the holistic thinking of chemistry students in the second intermediate grade, where the sample consisted of 60 female students in a second classfrom one of the intermediate schools in Baghdad city, divided into two groups: control and experimental. The experimental design was based on the partial control; the scientific course was defined in the third and fourth chapters of the science book of the second intermediate grade.The two research tools were prepared: the attainment test with the scientific course and the holistic thinking scale paragraph (36) of multiple-choice pre- and posttest. The results showed a statistically significant difference between
... Show MoreThe aim of the research is to prepare practical volleyball lessons by using the four pillars strategy for middle school students, and to identify the effect of the four pillars strategy in performing the transmission and volleyball skills in the second intermediate students, to assume that the two researchers assume that there are no statistically significant differences between the results of my skill performance tests Sending and preparing tribal and remote volleyball for the experimental and controlled groups, and there are no statistically significant differences between the results of the performance of the transmission and preparation skills of the volleyball between the two experimental and control groups, and the research co
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreIn present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.