Preferred Language
Articles
/
jBZerIoBVTCNdQwCnaJd
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>

Scopus Crossref
View Publication
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Multi-Focus Image Fusion Based on Pixel Significance Using Counterlet Transform
...Show More Authors

Abstract

 The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test  images, and compared with some present methods.

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Information Hiding And Multimedia Signal Processing
Upscale Gray Image using Mixing Transform Generation based on Tensor Product
...Show More Authors

The increased size of grayscale images or upscale plays a central role in various fields such as medicine, satellite imagery, and photography. This paper presents a technique for improving upscaling gray images using a new mixing wavelet generation by tensor product. The proposed technique employs a multi-resolution analysis provided by a new mixing wavelet transform algorithm to decompose the input image into different frequency components. After processing, the low-resolution input image is effectively transformed into a higher-resolution representation by adding a zeroes matrix. Discrete wavelets transform (Daubechies wavelet Haar) as a 2D matrix is used but is mixed using tensor product with another wavelet matrix’s size. MATLAB R2021

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (36)
Crossref (18)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.

  &nbsp

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Mon Jan 01 2018
Journal Name
Complexity
Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer’s Disease
...Show More Authors

Alzheimer’s disease (AD) is a progressive disorder that affects cognitive brain functions and starts many years before its clinical manifestations. A biomarker that provides a quantitative measure of changes in the brain due to AD in the early stages would be useful for early diagnosis of AD, but this would involve dealing with large numbers of people because up to 50% of dementia sufferers do not receive formal diagnosis. Thus, there is a need for accurate, low-cost, and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, electroencephalogram (EEG) based biomarkers can play a vital role in early diagnosis of AD as they can fulfill these needs. This is a cross-sectional study that aims to demon

... Show More
View Publication Preview PDF
Scopus (71)
Crossref (54)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2016
Journal Name
Al-academy
The aesthetic features of using Raku in ceramics Uta Grossmann Objects: غيد صادق عبد الغني
...Show More Authors

The Ceramic was a part from the humanitarian production that masseure the development and promotion of the Nations through decades. The Ceramic development involve wide and more techniques. One of these techniques that appear through the developmental centuries, the ( Alkaro Ceramic )technique, this technique depended the simplicity that comitted on religions thoughts through their development and its origin, so it had connected with these religions thoughts and had transmitted to the differnt Nations and they development in it to stay as a connection to the original key although its a way to keep them from adoption a new path. The tracker of the Ceramic fine art through its modernal level could knew and touched the Enormons transformati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 15 2017
Journal Name
Ieee Sensors Journal
Calibrating Distance Sensors for Terrestrial Applications Without Groundtruth Information
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref