Preferred Language
Articles
/
jBZerIoBVTCNdQwCnaJd
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>

Scopus Crossref
View Publication
Publication Date
Wed Jan 01 2025
Journal Name
International Journal Of Sports, Exercise And Physical Education
The effect of compound exercises (Physical, Physiological) supported by polar m430 devices on developing explosive power in futsal players
...Show More Authors

View Publication
Crossref
Publication Date
Sun Sep 06 2020
Journal Name
European Journal Of Dental Education
Evaluation of technology‐based learning by dental students during the pandemic outbreak of coronavirus disease 2019
...Show More Authors

View Publication
Crossref (53)
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Improvement of electrical features of SnO2 based varistor doped with Al2O3
...Show More Authors

One of the important objectives of the varistor is for a sustainable environment and reduce the pollution resulting from the frequent damage of the electrical devices and power station waste. In present work, the influence of Al2O3 additives on the non –linear electrical features of SnO2 varistors, has been investigated, where SnO2 ceramic powder doped with Al2O3 in three rates (0.005, 0.01, and 0.05), the XRD test improved that SnO2 is the primary phase, while CoCr2O4, and Al2O3 represent the secondary phases. The electrical tests of all prepared samples confirmed that the increasing of Al2O3 rates and sintering temperature improves and increase the electrical features, where the best results obtained at Al2O3 (0.05) and 1000℃, the non

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (127)
Crossref (117)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Modern Sport
Manufacturing an Innovative Device to Adjust the Distance between Female Fencing Players' Feet
...Show More Authors

تم التطرق في هذا البحث الى دور الذكاء الاصطناعي والتكنولوجيا الحديثة في العملية التدريبية بما يخدم أهدافه والاستفادة منه من خلال المخرجات الجيدة، حيث ان توظيف التكنولوجيا في تدريب رياضة المبارزة يسهل العملية التدريبية على المدرب واللاعب ويساهم في تقليل الجهد المبذول والوقت المستغرق ، وهدفت الدراسة الى التعرف على تأثير الجهاز المصنع في ضبط المسافة بين القدمين لدى عينة البحث  ،استخدم المنهج التجريبي بت

... Show More
Preview PDF
Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Nasaq
Types and functions of comparisons (based on Russian and Arabic phraseological units) Типы и функции сравнений (на материале русских и арабских фразеологизмов) انواع ووظائف المقارنات )في االمثال الروسية والعربية
...Show More Authors

Comparison is the most common and effective technique for human thinking: the human mind always judges something new based on its comparison with similar things that are already known. Therefore, literary comparisons are always clear and convincing. In our daily lives, we are constantly forced to compare different things in terms of quantity, quality, or other aspects. It is known that comparisons are used in literature in order for speech to be clear and effective, but when these comparisons are used in everyday speech, it is in order to convey the meaning directly and quickly, because many of these expressions used daily are comparisons. In our research, we discussed this comparison as a means of metaphor and expression in Russia

... Show More
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Developing A Mathematical Model for Planning Repetitive Construction Projects By Using Support Vector Machine Technique
...Show More Authors
Abstract<p>Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent</p> ... Show More
View Publication
Crossref (7)
Clarivate Crossref
Publication Date
Sat Aug 31 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Credit Card Fraud Detection Using an Autoencoder Model with New Loss Function
...Show More Authors

View Publication
Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref