Preferred Language
Articles
/
jBZerIoBVTCNdQwCnaJd
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>

Scopus Crossref
View Publication
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
Foreground Object Detection and Separation Based on Region Contrast

Foreground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high det

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Moving Objects Detection Based on Frequency Domain: image processing

In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.

... Show More
Scopus (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Valuation of Construction Projects Based on of Quantity Scale by using Expert System

The subject of an valuation of quality of construction projects is one of the topics which it becomes necessary of the absence of the quantity standards in measuring the control works and the quality valuation standards in constructional projects. In the time being it depends on the experience of the workers which leads to an apparent differences in the valuation.

The idea of this research came to put the standards to evaluate the quality of the projects in a special system depending on quantity scale nor quality specifying in order to prepare an expert system “ Crystal “ to apply this special system to able the engineers to valuate the quality of their projects easily and in more accurate ways.

View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation of Common Stocks Using The Fama-French Five Factor Model An Applied Study in The Iraq Stock Exchange

     The process of stocks evaluating considered as a one of challenges for the financial analysis, since the evaluating focuses on define the current value for the cash flows which the shareholders expected to have. Due to the importance of this subject, the current research aims to choose Fama & French five factors Model to evaluate the common stocks to define the Model accuracy in Fama& French for 2014. It has been used factors of volume, book value to market value, Profitability and investment, in addition to Beta coefficient which used in capital assets pricing Model as a scale for Fama & French five factors Model. The research sample included 11 banks listed in Iraq stock market which have me

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Enhancement Digital Forensic Approach for Inter-Frame Video Forgery Detection Using a Deep Learning Technique

    The digital world has been witnessing a fast progress in technology, which led to an enormous increase in using digital devices, such as cell phones, laptops, and digital cameras. Thus, photographs and videos function as the primary sources of legal proof in courtrooms concerning any incident or crime. It has become important to prove the trustworthiness of digital multimedia. Inter-frame video forgery one of common types of video manipulation performed in temporal domain. It deals with inter-frame video forgery detection that involves frame deletion, insertion, duplication, and shuffling. Deep Learning (DL) techniques have been proven effective in analysis and processing of visual media. Dealing with video data needs to handle th

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Nov 20 2024
Journal Name
Journal Of Baghdad College Of Dentistry
An Evaluation of the Solubility of Four Endodontic Sealers in Different Solvents (An In Vitro Study)

Background: Complete removal of filling material from the root canal is an essential requirement for endodontic retreatment. The purpose of the present study is to evaluate and compare the dissolving capabilities of various solvents (Xylene, Eugenate Desobturator, Eucalyptol, EDTA and Distilled water (as a control)) on four different types of sealer (Endofill, Apexit Plus, AH Plus and EndoSequence bioceramic sealer). Materials and method: Eighty samples of each sealer were prepared according to the manufacturers' instructions and then divided into ten groups (of 8 samples) for immersion in the respective solvents for 2 and 5 min immersion periods. Each sealer specimen was weighed to obtain its initial mass. The specimens were immersed in

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
International Journal Of Engineering Pedagogy (ijep)
E-learning in the Cloud Computing Environment: Features, Architecture, Challenges and Solutions

The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services

... Show More
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases

Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,

... Show More
Crossref (3)
Crossref
View Publication Preview PDF