Preferred Language
Articles
/
j4Y5M4YBIXToZYALx35A
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).

Crossref
Publication Date
Fri Jul 11 2025
Journal Name
Sciences Journal Of Physical Education
The effect of skill exercises according to the Keller model on attentional control and learning the shooting skills from stability and movement of basketball for female students
...Show More Authors

View Publication
Publication Date
Thu Jan 01 2015
Journal Name
Applied And Computational Mathematics
Texture Classification Using Spline, Wavelet Decomposition and Fractal Dimension
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Satellite image classification using proposed singular value decomposition method
...Show More Authors

In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Medical Journal Of Babylon
Effectiveness of Deep Breathing Technique on Pain Level of School Children during Catheterization
...Show More Authors

Scopus (2)
Scopus
Publication Date
Sun Dec 01 2002
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
DESCRIPTION OF A NEW SPECIES OF LEUCOSTOMA MEIGEN (DIPTERA: TACHINIDAE) FROM IRAQ
...Show More Authors

This work includes a detailed description of the Leucostoma nigricorpuris sp. nov. from
Iraq. Locality, host plants and data of collection were given.

View Publication Preview PDF
Publication Date
Thu Mar 30 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Preparation of a New Dosage Form of Metoclopramide Hydrochloride as Orodispersible Tablet
...Show More Authors

Metoclopramide HCl (MTB) is a potent antiemetic drug used for the treatment of nausea and vomiting. Many trials were made to prepare a satisfactory MTB orodispersible tablet using direct compression method.Various super disintegrants were used in this study which are croscarmellose sodium (CCS), sodium starch glycolate (SSG) and crospovidone (CP). The latter was the best in terms of showing the fastest disintegration time in the mouth.Among the different diluents utilized, it was found that a combination of microcrystalline cellulose PH101 (MCC 101), mannitol, dicalcium phosphate dihydrate (DPD) and Glycine was the best in preparing MTB orodispersible tablet with fastest disintegration time in the mouth.The physical parameters of the pre

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
البحوث التربويةوالنفسية
Preparing a teacher’s guide for computer books for the intermediate stage according to learning styles
...Show More Authors

Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 Ieee Conference On Computational Intelligence In Bioinformatics And Computational Biology (cibcb)
Granular computing approach for the design of medical data classification systems
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref