During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
The emergence of COVID-19 has resulted in an unprecedented escalation in different aspects of human activities, including medical education. Students and educators across academic institutions have confronted various challenges in following the guidelines of protection against the disease on one hand and accomplishing learning curricula on the other hand. In this short view, we presented our experience in implementing e-learning to the undergraduate nursing students during the present COVID-19 pandemic emphasizing the learning content, barriers, and feedback of students and educators. We hope that this view will trigger the preparedness of nursing faculties in Iraq to deal with this new modality of learning and improve it should t
... Show MoreThe present work establishes and validates HILIC strategies simple, accurate, exact and precise in pure form and inpharmaceutical dosage for separating and determining theophylline. These methods are developed on HILIC theophyllineseparation in columns ZIC2 and ZIC3. The eluent was prepared by mixing buffer (20% sodium acetate-40 mM, pH 5.5), 80%acetonitrile. The flow rate is 0.8 mL/min, with gradient elution and UV detection at 270 nm. In the ZIC2 and ZIC3 columns oftheophylline determining, the concentration range was 0.01-4μg.ml-1. The lower limit of detection and quantification fortheophylline were determined as 0.130, 0.190 μg.ml-1 and accuracy were 99.70%, 99.58% on ZIC2 and ZIC3, respectively. TheHILIC methods developed and validat
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreAbstract
The aim of the current research is to prepare an integrated learning program based on mathematics standards for the next generation of the NYS and to investigate its impact on the development of the teaching performance of middle school mathematics teachers and the future thinking skills of their students. To achieve the objectives of the research, the researcher prepared a list of mathematics standards for the next generation, which were derived from a list of standards. He also prepared a list of the teaching competencies required for middle school mathematics teachers in light of the list of standards, as well as clarified the foundations of the training program and its objectives and the mathematical
... Show MoreABSTRACT
Learning vocabulary is a challenging task for female English as a foreign language (EFL) students. Thus, improving students’ knowledge of vocabulary is critical if they are to make progress in learning a new language. The current study aimed at exploring the vocabulary learning strategies used by EFL students at Northern Border University (NBU). It also aimed to identify the mechanisms applied by EFL students at NBU University to learn vocabulary. It also aimed at evaluating the approaches adopted by EFL female students at Northern Border University (NBU) to learn a language. The study adopted the descriptive-analytical method. Two research instruments were developed to collect data namely, a survey qu
... Show MoreIn this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreAn image retrieval system is a computer system for browsing, looking and recovering pictures from a huge database of advanced pictures. The objective of Content-Based Image Retrieval (CBIR) methods is essentially to extract, from large (image) databases, a specified number of images similar in visual and semantic content to a so-called query image. The researchers were developing a new mechanism to retrieval systems which is mainly based on two procedures. The first procedure relies on extract the statistical feature of both original, traditional image by using the histogram and statistical characteristics (mean, standard deviation). The second procedure relies on the T-
... Show MoreThe first aim of this paper was to evaluate the push-out bond strength of the gutta-percha coating of Thermafil and GuttaCore and compare it with that of gutta-percha used to coat an experimental hydroxyapatite/polyethylene (HA/PE) obturator. The second aim was to assess the thickness of gutta-percha around the carriers of GuttaCore and HA/PE obturators using microcomputed tomography (