During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreThe present work establishes and validates HILIC strategies simple, accurate, exact and precise in pure form and inpharmaceutical dosage for separating and determining theophylline. These methods are developed on HILIC theophyllineseparation in columns ZIC2 and ZIC3. The eluent was prepared by mixing buffer (20% sodium acetate-40 mM, pH 5.5), 80%acetonitrile. The flow rate is 0.8 mL/min, with gradient elution and UV detection at 270 nm. In the ZIC2 and ZIC3 columns oftheophylline determining, the concentration range was 0.01-4μg.ml-1. The lower limit of detection and quantification fortheophylline were determined as 0.130, 0.190 μg.ml-1 and accuracy were 99.70%, 99.58% on ZIC2 and ZIC3, respectively. TheHILIC methods developed and validat
... Show MoreAn image retrieval system is a computer system for browsing, looking and recovering pictures from a huge database of advanced pictures. The objective of Content-Based Image Retrieval (CBIR) methods is essentially to extract, from large (image) databases, a specified number of images similar in visual and semantic content to a so-called query image. The researchers were developing a new mechanism to retrieval systems which is mainly based on two procedures. The first procedure relies on extract the statistical feature of both original, traditional image by using the histogram and statistical characteristics (mean, standard deviation). The second procedure relies on the T-
... Show MoreThe use of deep learning.
In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreThe first aim of this paper was to evaluate the push-out bond strength of the gutta-percha coating of Thermafil and GuttaCore and compare it with that of gutta-percha used to coat an experimental hydroxyapatite/polyethylene (HA/PE) obturator. The second aim was to assess the thickness of gutta-percha around the carriers of GuttaCore and HA/PE obturators using microcomputed tomography (
The current research aims to find out ( the effectiveness of the structural model of learning in the acquisition of geographical concepts at the first grade average students ) , and achieving the goals of research has been formulating the null hypothesis of the following :
" There is no difference statistically significant when Mistoi (0.5 ) between the mean scores of the collection of students in the experimental group that is studying the general geographical principles " Bonmozj constructivist learning " and the mean scores of the control group , which is considering the same article ," the traditional way " to acquire concepts.
The researcher adopted th
... Show MoreIn this paper it was designed a new fractal optical modulation by using a new iteration of fractal function, the result was analyzed by MTF evaluation, and it compared with results of normal optical modulation.
The normal and fractal optical modulator is a circular disc which has a radius R=9cm, both of them consist of twenty sectors, ten sectors are opaque and the other ten sectors are transmitted for the light.
The fractal optical modulator contains two patterns, the pattern two can be used to detect the target, and pattern one can be used to lock the target
The best similarity of MTF behavior for normal and fractal Reticle was evaluating the power transparent depends on the size o
... Show More