During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Generalized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.
The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreEpithelial ovarian cancer is the leading cause of cancer deaths in women. To date, an effective screening tool for ovarian cancer has not been identified Several clinical and biological factors including serum cancer antigen 125 (CA- 125) have been assessed for prognostic and predictive relevance CA-125 is an epithelial marker derived from coelomic epithelium. It is elevated in 90% of advanced ovarian cancers and in 50% of early ovarian cancers while 20% of ovarian cancers have low or no expression of CA- 125 CA-125 concentrations were measured by Mini Vidas test (VIDAS CA125 II / BIOMERIEUX / France). The median CA-125 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors an
... Show MoreBackground: Molars and premolars are considered as the most vulnerable teeth of caries attack, which is related to the morphology of their occlusal surfaces along with the difficulty of plaque removal. different methods were used for early caries detection that provide sensitive, accurate preoperative diagnosis of caries depths to establish adequate preventive measures and avoid premature tooth treatment by restoration. The aim of the present study was to evaluate the clinical sensitivity and specificity rates of DIAGNOdent and visual inspection as opposed to the ICDAS for the detection of initial occlusal caries in noncavitated first permanent molars. Materials and Methods: This study examined 139 occlusal surface of the first permanent
... Show MoreBackground: Staphylococcus spp. are widely distributed in nature and can cause nosocomial, skin infections, and foodborne illness, and it may lead to severe financial losses in birds by causing systemic infection in numerous organs. Aim: This study was conducted to determine the prevalence of Staphylococcus spp. in humans and birds in Baghdad city. Methods: Seventy-six oral cavity swabs were collected, including 41 from birds and 35 from breeders. All samples were examined by bacteriological methods and identified by using the VITEK technique, the samples were then further studied to test the ability of biofilm formation, and MDR factors and MAR index were tested with the use of seven antibiotics. Results: Among the 76 oral swa
... Show MoreBackground: Beta thalassemia major (β-TM) is an inheritable condition with many complications, especially in children. The blood-borne viral infection was proposed as a risk factor due to the recurrent blood transfusion regimen (hemotherapy) as human parvovirus B19 (B19V). Objective: This study investigated the B19V seroprevalence, DNA presence, B19V viral load, and B19V genotypes in β-TM patients and blood donors. Methods: This is a cross-sectional study incorporating 180 subjects, segregated into three distinct groups each of 60 patients, namely control, β-TM, and β-TM infected with Hepatitis C Virus (HCV). For the B19V prevalence in the studied group, the ELISA technique and real-time PCR were used. The genotyping was follo
... Show More