Gliotoxin (GT) is sulfur-containing mycotoxin within the 2,5-diketopiperazines class. First discovery from Gliocladium. Later discovered from different strains belonging to Aspergillus fumigatus mainly those have glicluster. This study outlines a study on the histological effects of gliotoxin (GT) on mouse brain and spleen tissues using light and electron microscopy, with a focus on its interaction with matrix metalloproteinases (MMPs). Histopathological changes through MMPs expressing variability estimated by using Immunohistochemistry (IHC). Mature mice were injected intraperitoneally with acute doses determined by data response analysis (EC50/IC50) as (125, 250, and 500 μg/ml) of GT and compared with a control group that received (methanol 10%). GT highlights specific histopathological changes, such as amyloid aggregation, apoptosis, and MMP expression. Evidence of infected spleen appears as Amyloid (insoluble protein) aggregates on red pulp, accumulation of phagocytic cells, and apoptosis of lymphocytes in white pulp. On the other hand, tissue vacuolation and atrophy of glial cells, necrosis of neuronal cells, and damage to Purkinje fibers on infected brains. IHC analysis showed MMP1 and MMP7 expression induction on mice spleen treated with different concentrations of GT. MMP-1 expression was induced 1.3 times when treated with 500 μg/ml compared with control, while the induction on MMP7 expression reached up to 3 times when treated with 500 μg/ml compared with control. Based on the information provided, it can be inferred that any harmful effects caused by toxins will impact and change the normal physiological expression of matrix metalloproteinases 1 & 7
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreAbstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a
... Show More