In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
In this research pulse high voltage circuit was used including resistance,
inductance and capacitor to achieve an experiment of cylindrically-tipped of plasma
switch .The charging voltage of up to 9kV using Rogowski coil and current-shunt
resistance (CVR) used to measure pulsed electrical discharge (PED). The current in
both self-triggering and third-electrode triggering modes. The pulsed current peaks
4kA and the duration of circuit pulses were recorded between 0.1μs and 0.3μs. The
experimental results has shown clearly the inductance effect in the circuit parts in
under damped oscillation regarding the value of circuit parts in addition to the
distance of the spark gap cylindrically-tipped electrodes during th
Polyacrylamide Solutions of different concentrations (0.2, 0.4, 0.6, 0.8, 1.0 %) of Ag nanoparticles and ZnO nanoparticles were prepared, the viscosities and surface tension were measured for all solutions, where measurements indicated an increase in these properties with increased concentration, where the relative viscosity of polyacrylamide/zinc nanoparticles increased from 1.275 to 2.243, and the relative viscosity of polyacrylamide/silver nanoparticles increased from 1.178 to 1.934. Viscosity is significant parameters during electrospinning process. While the surface tension of the polyacrylamide/zinc nanoparticles has changed from 0.0343 Nm-1 to .0.0.0 Nm-1 and changed from .0.000Nm-1 to.0.0.0 Nm-1. Also the constants KH and KK were
... Show MoreEM International
In this work an approach has been developed to investigate the influence of surface roughness on thermohydrodynamic performance in aligned and misaligned journal bearings by considering an average flow model and deriving the shear flow factor for various roughness configurations, similar to the pressure flow factor. An average Reynolds equation for rough surfaces is defined in term of pressure and shear flow factors, which can be obtained by numerical flow simulation, though the use of measured or numerically generated rough surfaces. Reynolds, heat conduction and energy equations are solved simultaneously by using a suitable numerical technique (Finite Difference Method) to obtain the pressure and temperature di
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MoreThe two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreThis paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via
... Show More