Preferred Language
Articles
/
ixaG64kBVTCNdQwCHY6z
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 protocol based on polarizing encoding with consideration of the optical fiber and free-space quantum channel imperfections and losses by estimating the quantum bit error rate and final secure key. This work shows a general repeatable modeling process for significant performance evaluation. The most remarkable result that emerged from the simulated data generated and detected is that the modeling process provides guidance for optical quantum channels design and characterization for other quantum key distribution protocols.

Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Improving Wireless Sensor Network Security Using Quantum Key Distribution
...Show More Authors

Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Laser
Hong-Ou-Mandel Dip Measurements of Two Independent Weak Coherent Pulses for Free Space Quantum Key Distribution Systems
...Show More Authors

Preparation of identical independent photons is the core of many quantum applications such as entanglement swapping and entangling process. In this work, Hong-Ou-Mandel experiment was performed to evaluate the degree of indistinguishability between independent photons generated from two independent weak coherent sources working at 640 nm. The visibility was 46%, close to the theoretical limit of 50%. The implemented setup can be adopted in quantum key distribution experiments carried out with free space as the channel link, as all the devices and components used are operative in the visible range of the electromagnetic spectrum.

View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Random Number Generation for Quantum Key Distribution Systems Based on Shot-Noise Fluctuations in a P-I-N Photodiode
...Show More Authors

A simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.

View Publication Preview PDF
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Simulation of Optical Energy Gap for Synthesis Carbon Quantum Dot by Laser Ablation
...Show More Authors

Fluorescent Carbon Quantum Dots (CQDS) are a new kind of carbon nanoparticles that have appeared recently and have collected much interest as potential competitors to conventional semiconductor quantum dots (QDs). In addition to their comparable fluorescent properties, CQDs have the desired specifications of environmental friendliness, low toxicity, simple synthetic routes, low cost and surface passivation The functionalization of CQDS allow the control of their physicochemical properties. The main aim of this kind of researches is to account the variables that cannot be measured directly from practical experiments. Therefore, the work here is focused on the account energy gap of bulk (Eg bulk) by theoretically method (simulation) after

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 10 2016
Journal Name
Scientific Reports
Experimental demonstration on the deterministic quantum key distribution based on entangled photons
...Show More Authors

As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based

... Show More
View Publication
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
International Journal Of Research And Reviews In Computer Science
Detection of the photon number splitting attack by using decoy states quantum key distribution system
...Show More Authors

The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.

Publication Date
Wed Jan 15 2020
Journal Name
Iraqi Journal Of Laser
Optimizing the Secure Key Rate of a Single Sequential Quantum Repeater with Two Different Quantum Memories
...Show More Authors

Quantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.

View Publication Preview PDF
Publication Date
Thu Jun 10 2010
Journal Name
Iraqi Journal Of Laser
Generation of Weak Coherent Pulses for Quantum Cryptography Systems
...Show More Authors

This work is a trial to ensure the absolute security in any quantum cryptography (QC) protocol via building an effective hardware for satisfying the single-photon must requirement by controlling the value of mean photon number. This was approximately achieved by building a driving circuit that provide very short pulses (≈ 10 ns) for laser diode -LD- with output power of (0.7-0.99mW) using the available electronic components in local markets. These short pulses enable getting faint laser pulses that were further attenuated to reach mean photon number equal to 0.08 or less.

View Publication Preview PDF
Publication Date
Mon Sep 20 2021
Journal Name
Key Engineering Materials
The Effect of Quantum Confinement on Optical Properties of CdSe Quantum Dots at Room Temperature
...Show More Authors

CdSe quantum dots possess a tuning energy gap which can control gap values according to the size of the quantum dots, this is made the material able to absorb the wavelengths within visible light. A simple model is provided for the absorption coefficient, optical properties, and optical constants for CdSe quantum dots from the size 10nm to 1nm with the range of visible region between (300-730) nm at room temperature. It turns out that there is an absorption threshold for each wavelength, CdSe quantum dots begin to absorb the visible spectrum of 1.4 nm at room temperature for a wavelength of 300 nm. It has been noted that; when the wavelength is increased, the absorption threshold also increases. This applies to the optical propertie

... Show More
View Publication
Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Optics
Optical and structural characteristics of carbon quantum dots manufacturing by electrochemical method
...Show More Authors

Electrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a

... Show More
View Publication
Scopus Clarivate Crossref