Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.
A .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr
... Show MoreBoltzmann mach ine neural network bas been used to recognize the Arabic speech. Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .
The spectral feature size is reduced by series of operations in
order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.
The neural network recognized Arabic. After Boltzmann Machine Neura l network training the system with
... Show MoreAbstract\
In this research, estimated the reliability of water system network in Baghdad was done. to assess its performance during a specific period. a fault tree through static and dynamic gates was belt and these gates represent logical relationships between the main events in the network and analyzed using dynamic Bayesian networks . As it has been applied Dynamic Bayesian networks estimate reliability by translating dynamic fault tree to Dynamic Bayesian networks and reliability of the system appreciated. As was the potential for the expense of each phase of the network for each gate . Because there are two parts to the Dynamic Bayesian networks and two part of gate (AND), which includes the three basic units of the
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
In recent years, the performance of Spatial Data Infrastructures for governments and companies is a task that has gained ample attention. Different categories of geospatial data such as digital maps, coordinates, web maps, aerial and satellite images, etc., are required to realize the geospatial data components of Spatial Data Infrastructures. In general, there are two distinct types of geospatial data sources exist over the Internet: formal and informal data sources. Despite the growth of informal geospatial data sources, the integration between different free sources is not being achieved effectively. The adoption of this task can be considered the main advantage of this research. This article addresses the research question of how the
... Show MoreIn recent years, the performance of Spatial Data Infrastructures for governments and companies is a task that has gained ample attention. Different categories of geospatial data such as digital maps, coordinates, web maps, aerial and satellite images, etc., are required to realize the geospatial data components of Spatial Data Infrastructures. In general, there are two distinct types of geospatial data sources exist over the Internet: formal and informal data sources. Despite the growth of informal geospatial data sources, the integration between different free sources is not being achieved effectively. The adoption of this task can be considered the main advantage of this research. This article addresses the research question of ho
... Show MoreIn this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.