Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Publication Date
Tue May 20 2008
Journal Name
Journal Of Planner And Development
Estimating Water Quality from Satellite Image and Reflectance Data

The useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables

View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate the Parameters and Related Probability Functions for Data of the Patients of Lymph Glands Cancer via Birnbaum-Saunders Model

 In this paper,we estimate the parameters and related probability functions, survival function, cumulative distribution function , hazard function(failure rate) and failure  (death) probability function(pdf) for two parameters Birnbaum-Saunders distribution which is fitting the complete data for the patients of  lymph glands cancer. Estimating the parameters (shape and scale) using (maximum likelihood , regression quantile and shrinkage) methods and then compute the value of mentioned related probability  functions depending on sample from real data which describe the duration of survivor for patients who suffer from the lymph glands cancer based on diagnosis of disease or the inter of patients in a hospital for perio

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Evolution and set up the maps for solar radiation of Iraq using Data observation and Angstrom model during monthly July2017
Abstract<p>The development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so</p> ... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Notes on Relative Contact Equivalence of Complex Analytic Map-Germs

In these notes, our goal is to give some results on criterion for complex analytic map-germs by their tangent spaces with respect to -equivalence where is the module of complex analytic vector fields on .In addition, we give some results about -trivial analytic family, the direct product and direct sum of map-germs.

View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Performance Equations for Household Compressors Depending on Manufacturing Data for Refrigerators and Freezers

Abstract

 A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.

Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.

The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 15 2002
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Computer Program for Predicting Ultimate Strength of Structural Concrete Sections of General Shape

Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask

     Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine lea

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Tue Apr 25 2023
Journal Name
Journal Of Periodontal Research
Salivary E‐cadherin as a biomarker for diagnosis and predicting grade of periodontitis
Abstract<sec><title>Objectives

To determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.

Background

E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.

Materials and Methods

A total of 63 patients with periodontitis (case) and 35

... Show More
View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq

View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref