Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Solution of Nonlinear Singular Boundary Value Problem
...Show More Authors

    This paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.

View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Pharmaceutical, Chemical And Biological Sciences
Review on: Vaginitis. A problem to be solved!!
...Show More Authors

Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in human body. Usually, the immune system keeps yeast under control. If the individual is sick or taking antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways including thrush is a yeast infection that causes white patches in oral cavity ,Candida esophagitis is thrush that spreads to esophagus, women can get vaginal yeast infections,(vaginitis) causing itchiness, pain and discharge, yeast infections of the skin cause itching and rashes ,yeast infections in bloodstream can be life-threatening . The current review article will concentrate on vaginal infection (vaginitis), project

... Show More
Publication Date
Sun Jul 02 2017
Journal Name
Journal Of Educational And Psychological Researches
Test anxiety for intermediate level
...Show More Authors

Test anxiety for intermediate level The current study aims to measure the test anxiety of research’s sample and to identify the statistical differences of test anxiety, considering two variables gender and students classes level (first and third intermediate class). To do this, a stratified random sampling of (300) student from first and third intermediate classes had selected from both the karkh and Rusafa sides of Baghdad province for the academic year 2015-2016. The author tested the whole sample by using the test anxiety scale that had tested for its validity and reliability. The results revealed that the research’s sample as a whole was suffering from test anxiety, there were a statistical differences between male and female tha

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Ibn Al- Haitham J. Fo R Pure & Appl. Sci
Evaluation of The Nuclear Data on(α,n)Reaction for Natural Molybdenum
...Show More Authors

The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element

... Show More
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluation of The Nuclear Data on(α,n)Reaction for Natural Molybdenum
...Show More Authors

The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc.   We considered an energy range from threshold to 25 MeV in interval (1 MeV).   The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for eac

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Publication Date
Tue May 20 2008
Journal Name
Journal Of Planner And Development
Estimating Water Quality from Satellite Image and Reflectance Data
...Show More Authors

The useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables

View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref