Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Apr 30 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system
...Show More Authors

According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through

... Show More
View Publication
Scopus (14)
Crossref (4)
Scopus Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (51)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems
...Show More Authors

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
New Iterative Method for Solving Nonlinear Equations
...Show More Authors

The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.

View Publication Preview PDF
Crossref
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Solution for Two-Sided Stefan Problem
...Show More Authors

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
The Optimal Control Problem for Triple Nonlinear Parabolic Boundary Value Problem with State Vector Constraints
...Show More Authors

       In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied.  The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived.  Under suitable conditions, theorems of necessary  and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.    

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Experimental Investigation of Bearing Capacity of Screw Piles and Excess Porewater Pressure in Soft Clay under Static Axial Loading
...Show More Authors

In this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Two – Dimensional Mathematical Model to Study Erosion Problem of Tigris River Banks at Nu’maniyah
...Show More Authors

The high and low water levels in Tigris River threaten the banks of the river. The study area is located on the main stream of Tigris River at Nu’maniyah City and the length of the considered reach is 5.4 km, especially the region from 400 m upstream Nu’maniyah Bridge and downstream of the bridge up to 1250 mwhich increased the risk ofthe problemthat itheading towardsthe streetand causingdanger tonearbyareas.

The aim of this research is to identify the reason of slope collapse and find proper treatments for erosion problem in the river banks with the least cost. The modeling approach consisted of several steps, the first of which  is by using “mini” JET (Jet Erosion Test) d

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 11 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
Three-species food chain model with cannibalism in the second level
...Show More Authors

This article suggests and explores a three-species food chain model that includes fear effects, refuges depending on predators, and cannibalism at the second level. The Holling type II functional response determines food consumption between stages of the food chain. This study examined the long-term behavior and impacts of the suggested model's essential elements. The model's solution properties were studied. The existence and stability of every probable equilibrium point were examined. The persistence needs of the system have been determined. It was discovered what conditions could lead to local bifurcation at equilibrium points. Appropriate Lyapunov functions are utilized to investigate the overall dynamics of the system. To support the a

... Show More
View Publication
Scopus Clarivate Crossref