Cyber security is a term utilized for describing a collection of technologies, procedures, and practices that try protecting an online environment of a user or an organization. For medical images among most important and delicate data kinds in computer systems, the medical reasons require that all patient data, including images, be encrypted before being transferred over computer networks by healthcare companies. This paper presents a new direction of the encryption method research by encrypting the image based on the domain of the feature extracted to generate a key for the encryption process. The encryption process is started by applying edges detection. After dividing the bits of the edge image into (3×3) windows, the diffusions on bits are applied to create a key used for encrypting the edge image. Four randomness tests are passed through NIST randomness tests to ensure whether the generated key is accepted as true. This process is reversible in the state of decryption to retrieve the original image. The encryption image that will be gained can be used in any cyber security field such as healthcare organization. The comparative experiments prove that the proposed algorithm improves the encryption efficiency has a good security performance, and the encryption algorithm has a higher information entropy 7.42 as well as a lower correlation coefficient 0.653.
In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
This research investigates solid waste management in Al-Kut City. It included the collection of medical and general solid waste generated in five hospitals different in their specialization and capacity through one week, starting from 03/02/2012. Samples were collected and analyzed periodically to find their generation rate, composition, and physical properties. Analysis results indicated that generation rate ranged between (1102 – 212) kg / bed / day, moisture content and density were (19.0 % - 197 kg/ m3) respectively for medical waste and (41%-255 kg/ m3) respectively for general waste. Theoretically, medical solid waste generated in Al-Kut City (like any other city), affected by capacity, number of patients in a day, and hosp
... Show MoreThe aim of this study is to use style programming goal and technical programming goal fuzzy to study assessing need annual accurately and correctly depending on the data and information about the quantity the actual use of medicines and medical supplies in all hospitals and health institutions during a certain period where they were taking the company public for the marketing of medicines and medical supplies sample for research. Programming model was built goal to this problem, which included (15) variable decision, (19) constraint and two objectives:
1 - rational exchange of budget allocated for medicines and supplies.
2 - ensure that the needs of patients of medicines and supplies needed to improve
BN Rashid, Ajes: Asian Journal of English Studies, 2013
In this paper, the discriminant analysis is used to classify the most wide spread heart diseases known as coronary heart diseases into two groups (patient, not patient) based on the changes of discrimination features of ten predictor variables that we believe they cause the disease . A random sample for each group is employed and the stepwise procedures are performed in order to delete those variables that are not important for separating the groups. Tests of significance of discriminant analysis and estimating the misclassification rates are performed