Cyber security is a term utilized for describing a collection of technologies, procedures, and practices that try protecting an online environment of a user or an organization. For medical images among most important and delicate data kinds in computer systems, the medical reasons require that all patient data, including images, be encrypted before being transferred over computer networks by healthcare companies. This paper presents a new direction of the encryption method research by encrypting the image based on the domain of the feature extracted to generate a key for the encryption process. The encryption process is started by applying edges detection. After dividing the bits of the edge image into (3×3) windows, the diffusions on bits are applied to create a key used for encrypting the edge image. Four randomness tests are passed through NIST randomness tests to ensure whether the generated key is accepted as true. This process is reversible in the state of decryption to retrieve the original image. The encryption image that will be gained can be used in any cyber security field such as healthcare organization. The comparative experiments prove that the proposed algorithm improves the encryption efficiency has a good security performance, and the encryption algorithm has a higher information entropy 7.42 as well as a lower correlation coefficient 0.653.
Given a matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the permutation of columns that maximizes the number of columns having together only one block of consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive ones submatrix will be considered. The new procedure is proposed to improve the column insertion approach. Then real world and random matrices from the set covering problem will be evaluated and computational results will be highlighted.
the pursue of social systems history present to us solid evidence that the collapse of that systems be caused by either the stagnancy aftermath maturity or unreal intellectual foundation which lead to sudden collapse, while the capitalism can avoided that intellectual damages due to its dynamic system with appropriate auto adaptation mechanism and use it excellently in the right time.
The globalization had excrete (as one of the capitalism adaptation mechanism) its own targets and its methods in framework of multinationals corporations which consist with capitalism states that employed the international organizations to reconstruction the global economy to serve such targets. So the glob
... Show MoreThis study aims to design unified electronic information system to manage students attendance in Lebanese French university/Erbil, as a system that simplifies the process of entering and counting the students absence, and generate absence reports to expel students who passed the acceptable limit of being absent, and by that we can replace the traditional way of using papers to count absence, with a complete electronically system for managing students attendance, in a way that makes the results accurate and unchangeable by the students.
In order to achieve the study's objectives, we designed an information syst
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreThe COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreIn this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show More