Background: Infective keratitis is the most common cause of blindness and preventable ocular morbidity worldwide. There are many published series of infective keratitis from both temperate and tropical parts of the world, and management strategies are well established1.
Objective: The current study was aimed to detect the specific bacteria and predisposing factors that predisposed for the bacterial keratitis.
Material and methods: Retrospective study of the hospital records of 40 patients who were diagnosed as bacterial keratitis and treated at the Ophthalmology in-patient department of at Ibn Al- haithum Teaching Hospital from May 2015 to December 2015.Patients who don’t have corneal scraping, or culture and sensitivity findings discarded from this study. Predisposing factors, clinical and microbiological data were reviewed. Corneal scrapings were obtained by physicians then were subjected for bacterial culture and biochemical tests.
Results: Pseudomonas aeruginosa was the most common bacteria isolated at higher percentage 19(47.5%) cases whereas Klebsiella pneumoniae isolated at lower percentage 2(5%). The most common risk factors was foreign body in 10 (25%) followed by contact lenses in 8 (20%) patients.
Conclusion: Gram negative bacteria were the most frequent bacterial organisms especially Pseudomonas aeruginosa isolated from corneal scraping and corneal ulcer was found to be occurring principally by foreign body followed by contact lens wearing.
In this paper, the concepts of -sequence prime ideal and -sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between -sequence prime ideal and each of primary ideal, -prime ideal, quasi prime ideal, strongly irreducible ideal, and closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and -sequence quasi prime ideals.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreThe main purpose of this paper is to study some results concerning reduced ring with another concepts as semiprime ring ,prime ring,essential ideal ,derivations and homomorphism ,we give some results a bout that.
This paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
Image steganography is undoubtedly significant in the field of secure multimedia communication. The undetectability and high payload capacity are two of the important characteristics of any form of steganography. In this paper, the level of image security is improved by combining the steganography and cryptography techniques in order to produce the secured image. The proposed method depends on using LSBs as an indicator for hiding encrypted bits in dual tree complex wavelet coefficient DT-CWT. The cover image is divided into non overlapping blocks of size (3*3). After that, a Key is produced by extracting the center pixel (pc) from each block to encrypt each character in the secret text. The cover image is converted using DT-CWT, then the p
... Show MoreIn this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.