Background: Population studies suggest that 3–8% of asymptomatic adults have thyroid nodules. Nodules have a 5–15% prevalence of malignancy. Fine-needle aspiration cytology is the primary and frequently initial tool for assessing the risk of malignancy in thyroid nodules and selecting patients for thyroid surgery.
Patients and Methods: This prospective study was done during the period from June 2007 to November 2008. The study includes 141 patients with palpable solitary or multiple thyroid nodules. Only patients with normal or low TSH values were referred for ultrasound examination and ultrasound guided FNAC, which were done using fine needles (G 20).
Results: eleven patients (7.8%) have insufficient or non-diagnostic aspirates and were excluded from the study. Of the remaining 130 patients that were included in our study, only 20 patients had thyroid carcinoma (15.3%). Seventy-nine patients (60.7%) had solitary nodule larger than 10 mm in largest dimension and 51 patients (39.3%) had two or more such nodules. The rate of cancer in males with thyroid nodules was higher than in females. The prevalence of thyroid cancer did not differ between patients with a solitary thyroid nodule (12 of 79 patients, 15.1%) and patients with multiple nodules (8 of 51 patients, 15.7%), the deference is statistically insignificant (P = 0.95). A nodule that is one of several nodules had a lower likelihood of being malignant than did a solitary nodule: (8.9% versus 15.1%) (P < 0.001).
Conclusion: Ultrasound guided FNAC is the primary and frequently initial tool for assessing the risk of malignancy in thyroid nodules. The prevalence of thyroid cancer did not differ between patients with a solitary thyroid nodule and those with multiple thyroid nodules. FNAC have limited role incytological diagnosis of follicular carcinomas, unless it is confirmed by histopathological diagnosis.
Release of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreObjective(s): The study aims at evaluating pregnancy-related health behaviors for pregnant women, and to identify the association between pregnancy-related health behaviors and their demographic characteristics of pregnant woman’s age, education, employment, residential area and monthly income.
Methodology: A descriptive study is carried out for the period from December 14th, 2020 to June 20th, 2021. This study was conducted through a non-probability (convenience) sample of 150 pregnant women attending, Abo Ghareeb primary health care sector in Abo Ghareeb spend. The sample has been collected by using the instrument to gather data and accomplish the study's objectives. A questionnaire is composed of (29) items and it is divided into
Experiments research is done to determine how saturated stiff clayey soil responds to a single impulsive load. Models made of saturated, stiff clay were investigated. To supply the single pulse energy, various falling weights from various heights were tested using the falling weight deflectometer (FWD). Dynamic effects can range from the major failure of a sensitive sensor or system to the apparent destruction of structures. This study examines the response of saturated stiff clay soil to a single impulsive load (vertical displacement at the soil surface below and beside the bearing plates). Such reactions consist of displacements, velocities, and accelerations caused by the impact occurring at the surface depth induced by the impact loads
... Show MoreIn the present study, a total of 272 freshwater fishes belonging to three species namely: Cyprinus carpio, Barbus xanthopterus and Aspius vorax, were collected from Euphrates river at Al-Haklania distrct, Al-Anbar province during the period from August 2008 till the end of July 2009, by using gill nets and cast nets. Fishes were survyed for intestinal parasitic worms. The investigation revealed the infectation of these fishes with four parasitic species: the digenetic trematode Aspidogaster limacoides from the intestine of C. carpio, B. xanthopterus and A. vorax, larval nematode Contracaecum spp. from the body cavity of C. carpio and the external surface of intestine of B
... Show MoreThis study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure