Objectives: The study aims to assess some of the contributing factors to abdominal postoperative wound infection and
to find out the relationship between postoperative wound infections and some socio-demographic characteristics such as
age, gender, level of education, occupation and residential area.
Methodology: A descriptive study was carried out in Sulaimani Teaching Hospital (Kurdistan Region). The study has
started from January 15th up to October 31th, 2009. To achieve the study objectives, a purposive "non probability"
sample of (100) patients who have abdominal postoperative wound infection, Adult female and male patients who were
admitted to Sulaimani Teaching Hospital was selected.
The data were collected through the utilization of a constructed questionnaire. It contained (25) items, which consisted
of three parts: the first one consists of (8) items which included the demographic characteristics, the second part consists
of (8) items which included preoperative factors to surgical site infection (SSI) and the third part consist of (9) items that
included postoperative factors to (SSI). The content validity of the instrument was established through a panel of (23)
expert. Reliability of the instrument was determined through the split-half approach (r=0.92).
Data were gathered through interview technique by using the questionnaire format and they were analyzed by the
application of the descriptive and inferential statistical methods.
Results: The results of the study indicated that there is a significant relationship between some socio-demographic
characteristics and preoperative factors (age with Hb, and chronic disease) (gender, cigarette smoking, obesity,
occupation with Hb) (cigarette smoking, with obesity). Also, the results indicated that there is no significant relationship
between socio-demographic characteristics and postoperative factors.
Recommendations: Based on the study results, the researchers recommend that a further study could be carried out to
assess factors that contribute to wound infection during the operation to decrease rate of SSI, and guidance about
hygiene to decrease risk of infection.
In the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi